Aufgabe 4.7Z: Erzeugung einer 2D–WDF
Aus LNTwww
Version vom 14. September 2016, 00:14 Uhr von Nabil (Diskussion | Beiträge) (Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Stochastische Signaltheorie/Linearkombinationen von Zufallsgrößen }} right| :Ausgehend von statist…“)
- Ausgehend von statistisch unabhängigen Größen u und υ, die beide zwischen –1 und +1 gleichverteilt sind und somit jeweils die Varianz σ2 = 2/3 besitzen, soll eine 2D-Zufallsgröße (x, y) generiert werden, wobei für die Komponenten gilt:
- $$x = A \cdot u + B \cdot v + C,$$
- $$y= D \cdot u + E \cdot v + F.$$
- Die zu erzeugende 2D–Zufallsgröße (x, y) soll die folgenden statistischen Eigenschaften aufweisen:
- Die Varianzen seien σx2 = 4 und σy2 = 10.
- Die Zufallsgröße x sei mittelwertfrei.
- Für den Mittelwert von y gelte my = 1.
- Der Korrelationskoeffizient zwischen x und y betrage
- $$\rho_{xy} = \sqrt{0.9} = 0.949.$$
- Die Zufallsgröße x besitze eine dreieckförmige WDF fx(x) entsprechend der oberen Grafik.
- Die Zufallsgröße y besitze eine trapezförmige WDF fy(y) entsprechend der unteren Grafik.
- Hinweis: Diese Aufgabe bezieht sich auf den Theorieteil von Kapitel 4.3. Um Mehrdeutigkeiten zu vermeiden wird festgelegt, dass alle Koeffizienten A ... F nicht negativ sein sollen.
Fragebogen
Musterlösung
- 1. Aufgrund der angegebenen Mittelwerte muss gelten: C = mx = 0 und F = my = 1.
- 2. Unter Berücksichtigung von σ2 = 2/3 gilt:
- $$\sigma_x^2 = \sigma^2 \cdot ( A^2 + B^2)= \frac {2}{3} \cdot ( A^2 + B^2) .$$
- Wegen σx2 = 4 folgt daraus A2 + B2 = 6. Eine dreieckförmige WDF bedeutet, dass A = ±B gelten muss. Somit erhält man A = B = 31/2 = 1.732 (negative Koeffizienten wurden ausgeschlossen).
- 3. Mit A und B entsprechend Punkt b) verbleiben zwei Bestimmungsgleichungen für D und E:
- $$\sigma_y^2 = \sigma^2 \cdot ( D^2 + E^2)= 10 \hspace{0.5cm} \Rightarrow \hspace{0.5cm} D^2 + E^2 = \frac {\sigma_y^2}{\sigma^2} = \frac {10}{2/3} \stackrel{!}{=}15,$$
- $$\rho_{xy} = \frac{A \cdot D + B \cdot E}{\sqrt{(A^2 + B^2)(D^2 + E^2)}} = \frac{\sqrt{3} \cdot (D + E)}{\sqrt{6 \cdot (D^2 + E^2)}} \stackrel{!}{=} \sqrt{0.9}.$$
- Daraus folgt weiter:
- $$D + E = \sqrt{1.8 \cdot ( D^2 + E^2)} = \sqrt{27} = 3 \sqrt{3}.$$
- Die Gleichung führt in Verbindung mit D2 + E2 = 15 und der oben angegebenen Nebenbedingung (D > E) zum Ergebnis:
- $$ D= 2 \sqrt{3}\hspace{0.15cm}\underline{ = 3.464}, \hspace{0.5cm}E= \sqrt{3} \hspace{0.15cm}\underline{= 1.732}.$$
- 4. Mit A = B = 1.732 kann die Zufallsgröße x maximal den Wert 3.464 annehmen (wenn jeweils u = 1 und υ = 1 gilt).
- Das Maximum von y ergibt sich mit diesen Parameterwerten zu ymax = D + E + F = 6.196, der Minimalwert zu ymin = –D –E +F = –4.196 (siehe Skizze der 2D-WDF).