Aufgabe 4.15: WDF und Kovarianzmatrix

Aus LNTwww
Version vom 14. September 2016, 22:25 Uhr von Nabil (Diskussion | Beiträge) (Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Stochastische Signaltheorie/Verallgemeinerung auf N-dimensionale Zufallsgrößen }} right| :Wir be…“)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu:Navigation, Suche

P ID669 Sto A 4 15.png
Wir betrachten hier die dreidimensionale Zufallsgröße x, deren allgemein dargestellte Kovarianzmatrix Kx in der Grafik oben angegeben ist. Die Zufallsgröße besitzt folgende Eigenschaften:
  • Die drei Komponenten sind gaußverteilt und es gilt für die Elemente der Kovarianzmatrix:
$$K_{ij} = \sigma_i \cdot \sigma_j \cdot \rho_{ij}.$$
  • Die Elemente auf der Hauptdiagonalen seien bekannt:
$$ K_{11} =1, K_{22} =0, K_{33} =0.25.$$
  • Der Korrelationskoeffizient zwischen den Koeffizienten x1 und x3 beträgt 0.8.
Im zweiten Teil der Aufgabe soll die Zufallsgröße y mit den beiden Komponenten y1 und y2 betrachtet werden, deren Kovarianzmatrix Ky durch die angegebenen Zahlenwerte (1, 0.4 und 0.25) bestimmt ist.
Die Wahrscheinlichkeitsdichtefunktion einer mittelwertfreien Gaußschen zweidimensionalen Zufallsgröße y lautet gemäß den Angaben auf der Seite Kovarianzmatrix und WDF mit N = 2:
$$\mathbf{f_y}(\mathbf{y}) = \frac{1}{{(2 \pi) \cdot \sqrt{|\mathbf{K_y}|}}}\cdot {\rm exp}{\left(-\frac{1}{2}\cdot \mathbf{y} ^{\rm T}\cdot\mathbf{K_y}^{-1} \cdot \mathbf{y} \right)}= \\ = C \cdot {\rm exp}{\left(-\gamma_1 \cdot y_1^2 + \gamma_2 \cdot y_2^2 +\gamma_{12} \cdot y_1 \cdot y_2 \right)}.$$
In den Teilaufgaben (5) und (6) sollen der Vorfaktor C und die weiteren WDF-Koeffizienten γ1, γ2 und γ12 gemäß dieser Vektordarstellung berechnet werden. Dagegen würde die entsprechende Gleichung bei herkömmlicher Vorgehensweise entsprechend Kapitel 4.2 lauten:
$$f_{y_1,\hspace{0.1cm}y_2}(y_1,y_2)=\frac{\rm 1}{\rm 2\pi \sigma_1 \sigma_2 \sqrt{\rm 1-\rho^2}}\cdot\exp\Bigg[-\frac{\rm 1}{\rm 2 (1-\rho^{\rm 2})}\cdot(\frac { y_1^{\rm 2}}{\sigma_1^{\rm 2}}+\frac { y_2^{\rm 2}}{\sigma_2^{\rm 2}}-\rm 2\rho \frac{{\it y}_1{\it y}_2}{\sigma_1 \cdot \sigma_2}) \rm \Bigg].$$
Hinweis: Die Aufgabe bezieht sich auf die theoretischen Grundlagen von Kapitel 4.7. Einige Grundlagen zur Anwendung von Vektoren und Matrizen finden sich auf den folgenden Seiten:
     Determinante einer Matrix,
     Inverse einer Matrix.


Fragebogen

1

Welche der nachfolgenden Aussagen sind zutreffend?

Die Zufallsgröße x ist mit Sicherheit mittelwertfrei.
Die Matrixelemente K12, K21, K23 und K32 sind 0.
Es gilt K31 = –K13.

2

Berechnen Sie das Matrixelement der letzten Zeile und ersten Spalte.

$K_\text{31}$ =

3

Berechnen Sie die Determinante |Ky|.

$|K_y|$ =

4

Berechnen Sie die inverse Matrix Iy = Ky–1 mit den Matrixelementen Iij:

$I_\text{11}$ =

$I_\text{12}$ =

$I_\text{21}$ =

$I_\text{22}$ =

5

Berechnen Sie den Vorfaktor C der 2D-WDF und vergleichen Sie das Ergebnis mit der entsprechenden Formel gemäß Kapitel 4.2.

$C$ =

6

Bestimmen Sie die Koeffizienten im Argument der Exponentialfunktion. Vergleichen Sie das Ergebnis mit der 2D–WDF–Gleichung.

$\gamma_1$ =

$\gamma_2$ =

$\gamma_12$ = -


Musterlösung

1.  Anhand der Kovarianzmatrix Kx ist keine Aussage darüber möglich, ob die zugrunde liegende Zufallsgröße x mittelwertfrei oder mittelwertbehaftet ist, da ein eventueller Mittelwert m herausgerechnet wird. Um Aussagen über den Mittelwert machen zu können, müsste die Korrelationsmatrix Rx bekannt sein. Aus K22 = (σ2)2 = 0 folgt zwingend, dass alle Elemente in der zweiten Zeile (K21, K23) und der zweiten Spalte (K12, K32) ebenfalls 0 sind. Dagegen ist die dritte Aussage falsch: Die Elemente sind symmetrisch zur Hauptdiagonalen, so dass stets K31 = K13 gelten muss. Richtig ist nur der Vorschlag 2.
P ID2915 Sto A 4 15a.png
2.  Aus K11 = 1 und K33 = 0.25 folgen direkt σ1 = 1 und σ3 = 0.5. Zusammen mit dem Korrelationskoeffizienten ρ13 = 0.8 (siehe Angabenblatt) erhält man somit:
$$K_{13} = K_{31} = \sigma_1 \cdot \sigma_2 \cdot \rho_{13}\hspace{0.15cm}\underline{= 0.4}.$$
3.  Die Determinante der Matrix Ky lautet:
$$|{\mathbf{K_y}}| = 1 \cdot 0.25 - 0.4 \cdot 0.4 \hspace{0.15cm}\underline{= 0.09}.$$
4.  Entsprechend den Angaben auf der Seite „Determinante und inverse Matrix” gilt:
$${\mathbf{I_y}} = {\mathbf{K_y}}^{-1} = \frac{1}{|{\mathbf{K_y}}|}\cdot \left[ \begin{array}{cc} 0.25 & -0.4 \\ -0.4 & 1 \end{array} \right].$$
Mit |Ky| = 0.09 gilt deshalb weiter:
$$I_{11} = \frac{25}{9}\hspace{0.15cm}\underline{ = 2.777};\hspace{0.3cm} I_{12} = I_{21} ='"`UNIQ--h-0--QINU`"'-\frac{40}{9} \hspace{0.15cm}\underline{ = -4.447};\hspace{0.3cm}I_{22} = \frac{100}{9} \hspace{0.15cm}\underline{= 11.111}.$$
5.  Ein Vergleich der Matrizen Ky und Kx unter der Nebenbedingung K22 = 0 zeigt, dass x und y identische Zufallsgrößen sind, wenn man y1 = x1 und y2 = x3 setzt. Somit gilt für die WDF-Parameter:
$$\sigma_1 =1, \hspace{0.3cm} \sigma_2 =0.5, \hspace{0.3cm} \rho = 0.8.$$
Der Vorfaktor entsprechend Kapitel 4.2 ist somit:
$$C =\frac{\rm 1}{\rm 2\pi \sigma_1 \sigma_2 \sqrt{\rm 1-\rho^2}}= \frac{\rm 1}{\rm 2\pi \cdot 1 \cdot 0.5 \cdot 0.6}= \frac{1}{0.6 \cdot \pi} \hspace{0.15cm}\underline{\approx 0.531}.$$
Mit der in der Teilaufgabe 3) berechneten Determinante ergibt sich das gleiche Ergebnis:
$$C =\frac{\rm 1}{\rm 2\pi \sqrt{|{\mathbf{K_y}}|}}= \frac{\rm 1}{\rm 2\pi \sqrt{0.09}} = \frac{1}{0.6 \cdot \pi}.$$
6.  Die unter Punkt 4) berechnete inverse Matrix kann auch wie folgt geschrieben werden:
$${\mathbf{I_y}} = \frac{5}{9}\cdot \left[ \begin{array}{cc} 5 & -8 \\ -8 & 20 \end{array} \right].$$
Somit lautet das Argument A der Exponentialfunktion:
$$A = \frac{5}{18}\cdot{\mathbf{y}}^{\rm T}\cdot \left[ \begin{array}{cc} 5 & -8 \\ -8 & 20 \end{array} \right]\cdot{\mathbf{y}} =\frac{5}{18}\left( 5 \cdot y_1^2 + 20 \cdot y_2^2 -16 \cdot y_1 \cdot y_2\right).$$
Durch Koeffizientenvergleich ergibt sich:
$$\gamma_1 = \frac{25}{18} \approx 1.389; \hspace{0.3cm} \gamma_2 = \frac{100}{18} \approx 5.556; \hspace{0.3cm} \gamma_{12} = - \frac{80}{18} \approx -4.444.$$
Entsprechend der herkömmlichen Vorgehensweise ergeben sich die gleichen Zahlenwerte:
$$\gamma_1 =\frac{\rm 1}{\rm 2\cdot \sigma_1^2 \cdot ({\rm 1-\rho^2})}= \frac{\rm 1}{\rm 2 \cdot 1 \cdot 0.36} \hspace{0.15cm}\underline{ \approx 1.389},$$
$$\gamma_2 =\frac{\rm 1}{\rm 2 \cdot\sigma_2^2 \cdot ({\rm 1-\rho^2})}= \frac{\rm 1}{\rm 2 \cdot 0.25 \cdot 0.36} = 4 \cdot \gamma_1 \hspace{0.15cm}\underline{\approx 5.556},$$
$$\gamma_{12} =-\frac{\rho}{ \sigma_1 \cdot \sigma_2 \cdot ({\rm 1-\rho^2})}= -\frac{\rm 0.8}{\rm 1 \cdot 0.5 \cdot 0.36} \hspace{0.15cm}\underline{ \approx -4.444}.$$