Eigenschaften von Nyquistsystemen
Erstes Nyquistkriterium im Zeitbereich
Für dieses Kapitel wurde vorausgesetzt, dass die Detektion eines Symbols nicht durch Nachbarimpulse beeinträchtigt werden soll. Dies erreicht man durch die Detektion des Signals
\(d(t) = \sum_{(\nu)} a_\nu \cdot g_d ( t - \nu T)\)
zu den Zeitpunkten νT immer dann, wenn der Detektionsgrundimpuls gd(t)
- auf den Bereich | t | < T beschränkt ist, was für das Kapitel 1.2 vorausgesetzt wurde, oder
- äquidistante Nulldurchgänge zu den Zeitpunkten νT aufweist.
Aus Gründen einer möglichst einfachen Darstellung wird im Kapitel 1.3 das Detektionsstörsignal dN(t) als vernachlässigbar klein angenommen.
\(g_d ( t = \nu T)= 0 \hspace{0.3cm}{\rm{f\ddot{u}r}}\hspace{0.3cm} \nu = \pm 1, \pm 2,\pm 3,\hspace{0.05cm}...\)
als Nyquistimpuls gNyq(t), benannt nach dem Physiker Harry Nyquist.
Zu den Detektionszeitpunkten gilt d(νT) = aν · gNyq(0), wie aus den blauen Kreisen und dem grünen Raster hervorgeht. Die Nachläufer der vorangegangenen Impulse (ν < 0) sowie die Vorläufer der nachfolgenden Impulse (ν > 0) beeinflussen beim Nyquistsystem die Detektion des Symbols a0 nicht.
Der Vollständigkeit halber sei erwähnt, dass für diese Grafik der Detektionsgrundimpuls
\(g_{\rm Nyq} ( t )= g_0 \cdot {\rm si} \left ( \frac{\pi \cdot
t}{T}\right)\cdot {\rm si} \left ( \frac{\pi \cdot t}{2 \cdot
T}\right)\)