Aufgabe 1.2Z: Linear verzerrendes System
Modulator, Kanal und Demodulator einer Einrichtung zur Nachrichtenübertragung können durch ein einziges lineares System mit dem Frequenzgang $$ H(f) = {\rm si }( \pi \cdot f \cdot \Delta t)$$ beschrieben werden. Die dazugehörige Impulsantwort ist rechteckförmig, symmetrisch um $t = 0$ und weist die Höhe $1/Δt$ sowie die Dauer Δt auf: $$ h(t) = \left\{ \begin{array}{c} 1/\Delta t \\ 1/(2\Delta t) \\ 0 \\ \end{array} \right. \begin{array}{*{4}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} {\left| \hspace{0.005cm} t\hspace{0.05cm} \right| < \Delta t/2,} \\ {\left| \hspace{0.005cm}t\hspace{0.05cm} \right| = \Delta t/2,} \\ {\left|\hspace{0.005cm} t \hspace{0.05cm} \right| > \Delta t/2.} \\ \end{array}$$
Es handelt sich um einen Spalttiefpass, der im Kapitel 1.3 des Buches „Lineare zeitinvariante Systeme” eingehend behandelt wurde.
Am Systemeingang liegt das periodische Rechtecksignal $q(t)$ mit der Periodendauer $T_0$ an. Die Dauer der einzelnen Rechtecke und die der Lücken sind jeweils $T_0/2$. Die Höhe der Rechtecke beträgt 2V.
Das Signal $υ(t)$ am Systemausgang wird als Sinkensignal bezeichnet. Dieses ist für zwei verschiedene Parameterwerte der äquivalenten Impulsdauer in der Grafik dargestellt:
- Das Signal $υ_1(t)$ ergibt sich, wenn die äquivalente Impulsdauer von $h(t)$ genau $Δt_1$ ist.
- Entsprechend ergibt sich das Signal $υ_2(t)$ mit der äquivalenten Impulsdauer $Δt_2$.
Die Veränderung vom Rechtecksignal $q(t)$ zum dreieck- bzw. trapezförmigen Sinkensignal $υ(t)$ ist auf lineare Verzerrungen zurückzuführen und wird durch das Fehlersignal $ε(t) = υ(t) – q(t)$ erfasst. Mit den Leistungen $P_q$ und $P_ε$ der Signale $q(t)$ und $ε(t)$ kann das Sinken–$\text{SNR}$ berechnet werden:
$$\rho_{v} = \frac{P_{q}}{P_{\varepsilon }} \hspace{0.05cm}.$$ Hinweis: Die Aufgabe bezieht sich auf den Theorieteil von Kapitel 1.2. Die Leistungen $P_q$ und $P_ε$ sind die quadratischen Mittelwerte der Signale $q(t)$ und $ε(t)$ und können bei periodischen Signalen mit der Periodendauer $T_0$ wie folgt ermittelt werden: $$P_{q} = \overline{q(t)^2} = \frac{1}{T_{\rm 0}} \cdot \int\limits_{0}^{ T_{\rm 0}} {q(t)^2 }\hspace{0.1cm}{\rm d}t \hspace{0.05cm}, \hspace{0.5cm} P_{\varepsilon} = \overline{\varepsilon(t)^2} = \frac{1}{T_{\rm 0}} \cdot \int\limits_{0}^{ T_{\rm 0}} {\varepsilon(t)^2 }\hspace{0.1cm}{\rm d}t \hspace{0.05cm}.$$
Fragebogen
Musterlösung
Das Fehlersignal $ε_1(t)$ ist in der Grafik dargestellt. Man erkennt, dass $ε_1(t)$ alle Werte zwischen ±1 V annehmen kann:
$$\varepsilon}_{\rm 1, max} \hspace{0.15cm}\underline {= {1}\;{\rm V}} \hspace{0.05cm}.$$
3.Es genügt die Mittelung über den Zeitbereich von 0 bis $T_0/4$, da alle anderen Teilintervalle genau gleiche Beiträge liefern: $$P_{\varepsilon{\rm 1}} = \frac{1}{T_{\rm 0}/4} \cdot \int\limits_{0}^{ T_{\rm 0}/4} {\varepsilon_1(t)^2 }\hspace{0.1cm}{\rm d}t = \frac{1 \,{\rm V}^2}{T_{\rm 0}/4} \cdot \int\limits_{0}^{ T_{\rm 0}/4} {\left( 1 - \frac{t}{T_{\rm 0}/4}\right)^2 }\hspace{0.1cm}{\rm d}t \hspace{0.05cm}.$$ Mit der Substitution $x = 4 · t/T_0$ kann hierfür auch geschrieben werden: $$P_{\varepsilon{\rm 1}} = 1 \,{\rm V}^2 \cdot \int\limits_{0}^{ 1} {\left( 1 - 2x + x^2\right)}\hspace{0.1cm}{\rm d}x \hspace{0.05cm}= 1 \,{\rm V}^2 \cdot \left( 1 - 1 + \frac{1}{3}\right)\hspace{0.15cm}\underline {= 0.333} \,{\rm V}^2\hspace{0.05cm}.$$
4.Die Mittelung über eine Periode des quadrierten Quellensignals liefert: $$P_{q} = \frac{1}{T_0} \cdot \left[(2\,{\rm V})^2 \cdot \frac{T_0}{2}+(0\,{\rm V})^2 \cdot \frac{T_0}{2} \right]\hspace{0.15cm}\underline {= 2\,{\rm V^2}}\hspace{0.05cm}.$$ Das Sinken–SNR beträgt somit $$\rho_{v{\rm 1}} = \frac{P_{q}}{P_{\varepsilon {\rm 1}}} = \frac{2 \,{\rm V}^2}{0.333 \,{\rm V}^2}\hspace{0.15cm}\underline {= 6} \hspace{0.05cm}.$$ 5.Entsprechend der Skizze auf dem Angabenblatt wird nun aus einem Rechteck der Dauer $T_0/2$ ein Trapez der absoluten Dauer $0.75 · T_0$. Damit ist nach den Gesetzen der Faltung offensichtlich, dass die äquivalente Impulsdauer $Δt_2 = 0.25 · T_0$ sein muss.
6. Die obige Grafik zeigt, dass sich $ε_2(t)$ ebenso wie $ε_1(t)$ innerhalb einer Periodendauer $T_0$ aus vier Dreiecken zusammensetzt, doch sind diese nur halb so breit. In der Hälfte der Zeit ist $ε_2(t) = 0$.
Wegen $ε_{2,max} = ε_{1,max} = 1 V$ erhält man:
$$P_{\varepsilon{\rm 2}} = \frac{P_{\varepsilon{\rm 1}}}{2} \hspace{0.15cm}\underline {= 0.167} \,{\rm V}^2 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \rho_{v{\rm 2}} = \frac{P_{q}}{P_{\varepsilon {\rm 2}}}\hspace{0.15cm}\underline {= 12} \hspace{0.05cm}.$$
7. Für $Δt = T_0/2$ wurde in der Teilaufgabe c) die Verzerrungsleistung $P_{ε1} = 1 V^{ 2 }/3 berechnet. In der Teilaufgabe f) wurde gezeigt, dass bei $Δt = T_0/4$ die Verzerrungsleistung $P_{ε2}$ nur halb so groß ist. Anschaulich wurde erläutert, dass ein linearer Zusammenhang besteht. Daraus folgen für $Δt ≤ T_0/2$ die empirischen Gleichungen: '"`UNIQ-MathJax43-QINU`"' Der Sonderfall $Δt = 0.05 T_0$ führt somit zu den Resultaten: $$P_{\varepsilon{\rm 3}} = \frac{2 \,{\rm V}^2}{60} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \rho_{v{\rm 3}} = \frac{P_{q}}{P_{\varepsilon {\rm 3}}}\hspace{0.15cm}\underline {= 60} \hspace{0.05cm}.$$