Approximation der Fehlerwahrscheinlichkeit
Aus LNTwww
< Digitalsignalübertragung
Version vom 28. Dezember 2016, 14:39 Uhr von Ayush (Diskussion | Beiträge)
Optimale Entscheidung bei binärer Übertragung (1)
Wir gehen hier von einem Übertragungssystem aus, das wie folgt charakterisiert werden kann: r = s + n:
- Der das Übertragungssystem vollständig beschreibende Vektorraum wird von N = 2 zueinander orthogonalen Basisfunktionen φ1(t) und φ2(t) aufgespannt.
- Demzufolge ist auch die Wahrscheinlichkeitsdichtefunktion des additiven und weißen Gaußschen Rauschens zweidimensional anzusetzen, gekennzeichnet durch den Vektor n = (n1, n2).
- Es gibt nur zwei mögliche Sendesignale (M = 2), die durch die beiden Vektoren s0 = (s01, s02) und s1 = (s11, s12) beschrieben werden:
- \[s_0(t) \hspace{-0.1cm} = \hspace{-0.1cm} s_{01} \cdot \varphi_1(t) + s_{02} \cdot \varphi_2(t) \hspace{0.05cm},\]
- \[s_1(t) \hspace{-0.1cm} = \hspace{-0.1cm} s_{11} \cdot \varphi_1(t) + s_{12} \cdot \varphi_2(t) \hspace{0.05cm}.\]
- Die beiden Nachrichten m0 ⇔ s0 und m1 ⇔ s1 sind nicht notwendigermaßen gleichwahrscheinlich.
- Aufgabe des Entscheiders ist es nun, für den gegebenen Empfangsvektor r einen Schätzwert nach der MAP–Entscheidungsregel anzugeben. Diese lautet im vorliegenden Fall:
- \[\hat{m} = {\rm arg} \max_i \hspace{0.1cm} [ {\rm Pr}( m_i) \cdot p_{\boldsymbol{ r} \hspace{0.05cm}|\hspace{0.05cm}m } (\boldsymbol{ \rho } |m_i ) ] \hspace{0.15cm} \in \hspace{0.15cm}\{ m_i\}\hspace{0.3cm}{\rm mit}\hspace{0.3cm} \boldsymbol{ r } = \boldsymbol{ \rho } = (\rho_1, \rho_2) \hspace{0.05cm}.\]
Im hier betrachteten Sonderfall N = 2 und M = 2 partitioniert der Entscheider den zweidimensionalen Raum in die zwei disjunkten Gebiete I0 und I1, wie in der nachfolgenden Grafik verdeutlicht. Liegt der Empfangswert in I0, so wird als Schätzwert m0 ausgegeben, andernfalls m1.
Die Herleitung und Bildbeschreibung folgt auf der nächsten Seite.