Approximation der Fehlerwahrscheinlichkeit
Optimale Entscheidung bei binärer Übertragung (1)
Wir gehen hier von einem Übertragungssystem aus, das wie folgt charakterisiert werden kann: r = s + n:
- Der das Übertragungssystem vollständig beschreibende Vektorraum wird von N = 2 zueinander orthogonalen Basisfunktionen φ1(t) und φ2(t) aufgespannt.
- Demzufolge ist auch die Wahrscheinlichkeitsdichtefunktion des additiven und weißen Gaußschen Rauschens zweidimensional anzusetzen, gekennzeichnet durch den Vektor n = (n1, n2).
- Es gibt nur zwei mögliche Sendesignale (M = 2), die durch die beiden Vektoren s0 = (s01, s02) und s1 = (s11, s12) beschrieben werden:
- \[s_0(t) \hspace{-0.1cm} = \hspace{-0.1cm} s_{01} \cdot \varphi_1(t) + s_{02} \cdot \varphi_2(t) \hspace{0.05cm},\]
- \[s_1(t) \hspace{-0.1cm} = \hspace{-0.1cm} s_{11} \cdot \varphi_1(t) + s_{12} \cdot \varphi_2(t) \hspace{0.05cm}.\]
- Die beiden Nachrichten m0 ⇔ s0 und m1 ⇔ s1 sind nicht notwendigermaßen gleichwahrscheinlich.
- Aufgabe des Entscheiders ist es nun, für den gegebenen Empfangsvektor r einen Schätzwert nach der MAP–Entscheidungsregel anzugeben. Diese lautet im vorliegenden Fall:
- \[\hat{m} = {\rm arg} \max_i \hspace{0.1cm} [ {\rm Pr}( m_i) \cdot p_{\boldsymbol{ r} \hspace{0.05cm}|\hspace{0.05cm}m } (\boldsymbol{ \rho } |m_i ) ] \hspace{0.15cm} \in \hspace{0.15cm}\{ m_i\}\hspace{0.3cm}{\rm mit}\hspace{0.3cm} \boldsymbol{ r } = \boldsymbol{ \rho } = (\rho_1, \rho_2) \hspace{0.05cm}.\]
Im hier betrachteten Sonderfall N = 2 und M = 2 partitioniert der Entscheider den zweidimensionalen Raum in die zwei disjunkten Gebiete I0 und I1, wie in der nachfolgenden Grafik verdeutlicht. Liegt der Empfangswert in I0, so wird als Schätzwert m0 ausgegeben, andernfalls m1.
Die Herleitung und Bildbeschreibung folgt auf der nächsten Seite.
Optimale Entscheidung bei binärer Übertragung (2)
Beim AWGN–Kanal und M = 2 lautet somit die Entscheidungsregel: Man entscheide sich immer dann für die Nachricht m0, falls folgende Bedingung erfüllt ist:
\[{\rm Pr}( m_0) \cdot {\rm exp} \left [ - \frac{1}{2 \sigma_n^2} \cdot || \boldsymbol{ \rho } - \boldsymbol{ s }_0 ||^2 \right ] > {\rm Pr}( m_1) \cdot {\rm exp} \left [ - \frac{1}{2 \sigma_n^2} \cdot || \boldsymbol{ \rho } - \boldsymbol{ s }_1 ||^2 \right ] \hspace{0.05cm}.\]
Die Grenzlinie zwischen den beiden Entscheidungsregionen I0 und I1 erhält man, wenn man in obiger Gleichung das Größerzeichen durch das Gleichheitszeichen ersetzt und die Gleichung etwas umformt:
\[|| \boldsymbol{ \rho } - \boldsymbol{ s }_0 ||^2 - 2 \sigma_n^2 \cdot {\rm ln} \hspace{0.15cm}[{\rm Pr}( m_0)] = || \boldsymbol{ \rho } - \boldsymbol{ s }_1 ||^2 - 2 \sigma_n^2 \cdot {\rm ln} \hspace{0.15cm}[{\rm Pr}( m_1)] \]
\[\Rightarrow \hspace{0.3cm} || \boldsymbol{ s }_1 ||^2 - || \boldsymbol{ s }_0 ||^2 + 2 \sigma_n^2 \cdot {\rm ln} \hspace{0.15cm} \frac{{\rm Pr}( m_0)}{{\rm Pr}( m_1)} = 2 \cdot \boldsymbol{ \rho }^{\rm T} \cdot (\boldsymbol{ s }_1 - \boldsymbol{ s }_0)\hspace{0.05cm}.\]
Aus dieser Gleichung erkennt man:
- Die Grenzkurve zwischen den Regionen I0 und I1 ist eine Gerade, da die Bestimmungsgleichung linear im Empfangsvektor ρ = (ρ1, ρ2) ist.
- Bei gleichwahrscheinlichen Symbolen verläuft die Grenze genau in der Mitte zwischen s0 und s1 und um 90° verdreht gegenüber der Verbindungslinie zwischen den Sendepunkten (linke Grafik):
- \[|| \boldsymbol{ s }_1 ||^2 - || \boldsymbol{ s }_0 ||^2 = 2 \cdot \boldsymbol{ \rho }^{\rm T} \cdot (\boldsymbol{ s }_1 - \boldsymbol{ s }_0)\hspace{0.05cm}.\]
- Für Pr(m0) > Pr(m1) ist die Entscheidungsgrenze in Richtung des unwahrscheinlicheren Symbols (s1) verschoben, und zwar um so mehr, je größer die AWGN–Streuung σn ist.
Die grün–durchgezogene Entscheidungsgrenze im rechten Bild sowie die Entscheidungsregionen I0 (rot) und I1 (blau) gelten für die Streuung σn = 1 und die gestrichelten Grenzlinien für σn = 0 bzw. σn = 2.