Aufgabe 1.15: Distanzspektren von HC (7, 4, 3) und HC (8, 4, 4)
Wir betrachten wie in der "Aufgabe 1.9"
- den $(7, 4, 3)$–Hamming–Code und
- den erweiterten $(8, 4, 4)$–Hamming–Code.
Die Grafik zeigt die zugehörigen Codetabellen. In der "Aufgabe 1.12" wurde schon die Syndromdecodierung dieser beiden Codes behandelt. In dieser Aufgabe sollen die Unterschiede hinsichtlich des Distanzspektrums $\{W_{i}\}$ herausgearbeitet werden. Für die Laufvariable gilt $i = 0, \ \text{...} \ , n$:
- Die Integerzahl $W_{i}$ gibt die Zahl der Codeworte $\underline{x}$ mit dem "Hamming–Gewicht" $\underline{w}_{\rm H}( \underline{x} ) = i$ an.
- Bei den hier betrachteten linearen Code bescheibt $W_{i}$ gleichzeitig die Anzahl der Codeworte mit der "Hamming–Distanz" $i$ vom Nullwort.
- Häufig weist man der Zahlenmenge $\{W_i\}$ einer Pseudo–Funktion zu, die man "Gewichtsfunktion" (englisch: "Weight Enumerator Function", WEF) nennt:
- $$\left \{ \hspace{0.05cm} W_i \hspace{0.05cm} \right \} \hspace{0.3cm} \Leftrightarrow \hspace{0.3cm} W(X) = \sum_{i=0 }^{n} W_i \cdot X^{i} = W_0 + W_1 \cdot X + W_2 \cdot X^{2} + ... \hspace{0.05cm} + W_n \cdot X^{n}\hspace{0.05cm}.$$
Bhattacharyya hat die Pseudo–Funktion $W(X)$ verwendet, um eine kanalunabhängige (obere) Schranke für die Blockfehlerwahrscheinlichkeit anzugeben:
- $${\rm Pr(Blockfehler)} \le{\rm Pr(Bhattacharyya)} = W(\beta) -1 \hspace{0.05cm}.$$
Der so genannte "Bhattacharyya–Parameter" ist dabei wie folgt gegeben:
- $$\beta = \left\{ \begin{array}{c} \lambda \\ \\ 2 \cdot \sqrt{\varepsilon \cdot (1- \varepsilon)}\\ \\ {\rm e}^{- R \hspace{0.05cm}\cdot \hspace{0.05cm}E_{\rm B}/N_0} \end{array} \right.\quad \begin{array}{*{1}c} {\rm f\ddot{u}r\hspace{0.15cm} das \hspace{0.15cm}BEC-Modell},\\ \\ {\rm f\ddot{u}r\hspace{0.15cm} das \hspace{0.15cm}BSC-Modell}, \\ \\{\rm f\ddot{u}r\hspace{0.15cm} das \hspace{0.15cm}AWGN-Modell}. \end{array}$$
Anzumerken ist, dass die Bhattacharyya–Schranke im allgemeinen sehr pessimistisch ist. Die tatsächliche Blockfehlerwahrscheinlichkeit liegt oft deutlich darunter.
Hinweise:
- Die Aufgabe bezieht sich auf das Kapitel "Schranken für die Blockfehlerwahrscheinlichkeit".
- Eine ähnliche Thematik wird in "Aufgabe 1.14" und in "Aufgabe 1.16" behandelt.
- Als Kanäle sollen betrachtet werden:
- das BSC–Modell ("Binary Symmetric Channel"),
- das BEC–Modell ("Binary Erasure Channel"),
- das "AWGN–Kanalmodell".
Fragebogen
Musterlösung
- $W_{0} \ \underline{ = \ 1}$ ⇒ Codewort beinhaltet keine Eins ⇒ das Nullwort,
- $W_{3} \ \underline{ = \ 7}$ ⇒ Codeworte beinhalten drei Einsen,
- $W_{4} \ \underline{ = \ 7}$ ⇒ Codeworte beinhalten vier Einsen,
- $W_{7} \ \underline{ = \ 1}$ ⇒ Codewort besteht nur aus Einsen.
$W_{i}$ gibt gleichzeitig die Anzahl der Codeworte an, die sich vom Nullwort in $i \ \rm Bit$ unterscheiden.
(2) Die Bhattacharyya–Schranke lautet:
- $${\rm Pr(Blockfehler)} \le{\rm Pr(Bhattacharyya)} = W(\beta) -1 \hspace{0.05cm}.$$
- Die Gewichtsfunktion ist durch die Teilaufgabe (1) festgelegt:
- $$W(X) = 1+ 7 \cdot X^{3} + 7 \cdot X^{4} + X^{7}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm Pr(Bhattacharyya)} = 7 \cdot \beta^{3} + 7 \cdot \beta^{4} + \beta^{7} \hspace{0.05cm}.$$
- Für den Bhattacharyya–Parameter des BSC–Modells gilt:
- $$\beta = 2 \cdot \sqrt{\varepsilon \cdot (1- \varepsilon)} = 2 \cdot \sqrt{0.01 \cdot 0.99} = 0.199\hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm Pr(Bhattacharyya)} = 7 \cdot 0.199^{3} + 7 \cdot 0.199^{4} + 0.199^{7} \hspace{0.15cm} \underline{ \approx 6.6\%} \hspace{0.05cm}.$$
- Ein Vergleich mit der tatsächlichen Blockfehlerwahrscheinlichkeit, wie in "Aufgabe 1.12" berechnet,
- $${\rm Pr(Blockfehler)} \approx 21 \cdot \varepsilon^2 = 2.1 \cdot 10^{-3} \hspace{0.05cm},$$
- zeigt, dass Bhattacharyya nur eine grobe Schranke bereitstellt. Im vorliegenden Fall liegt diese Schranke um mehr als den Faktor $30$ über dem tatsächlichen Wert.
(3) Aus der Codetabelle des $(8, 4, 4)$–Codes erhält man folgende Ergebnisse:
- $$W(X) = 1+ 14 \cdot X^{4} + X^{8}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm Pr(Bhattacharyya)} = 14 \cdot \beta^{4} + \beta^{8} = 14 \cdot 0.199^{4} + 0.199^{8} \hspace{0.15cm} \underline{ \approx 2.2\%} \hspace{0.05cm}.$$
(4) Die Gleichung für den Bhattacharyya–Parameter lautet:
- $$\beta = \left\{ \begin{array}{c} \lambda \\ \\ 2 \cdot \sqrt{ \varepsilon \cdot (1- \varepsilon)}\\ \\ {\rm e}^{- R \cdot E_{\rm B}/N_0} \end{array} \right.\quad \begin{array}{*{1}c} {\rm f\ddot{u}r\hspace{0.15cm} das \hspace{0.15cm}BEC-Modell},\\ \\ {\rm f\ddot{u}r\hspace{0.15cm} das \hspace{0.15cm}BSC-Modell}, \\ \\{\rm f\ddot{u}r\hspace{0.15cm} das \hspace{0.15cm}AWGN-Modell}. \end{array}$$
Mit dem BEC–Modell ergibt sich genau die gleiche Schranke, wenn die Auslöschungswahrscheinlichkeit $\lambda = \beta \ \underline{= 0.199}$ beträgt.
(5) Entsprechend obiger Gleichung muss gelten:
- $$\beta = {\rm e}^{- R \hspace{0.05cm}\cdot \hspace{0.05cm} E_{\rm B}/N_0} = 0.199 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} R \cdot E_{\rm B}/N_0 = 10^{0.199} = 1.58 \hspace{0.05cm}.$$
- Die Coderate des erweiterten $(8, 4, 4)$–Hamming–Codes beträgt $R = 0.5$:
- $$E_{\rm B}/N_0 = 3.16 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 \hspace{0.15cm} \underline{\approx 5\,{\rm dB}} \hspace{0.05cm}.$$
(6) Mit der Coderate $R = 4/7$ des $(7, 4, 3)$–Hamming–Codes erhält man:
- $$E_{\rm B}/N_0 = 7/4 \cdot 1.58 = 2.765 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 \hspace{0.15cm} \underline{\approx 4.417\,{\rm dB}} \hspace{0.05cm}.$$