Aufgabe 2.08: Generatorpolynome für Reed-Solomon

Aus LNTwww
Wechseln zu:Navigation, Suche

Vier Generatormatrizen,  drei davon beschreiben Reed–Solomon–Codes

In der  "Aufgabe 2.7"  sollten Sie die Codeworte des  $\rm RSC \, (7, \, 3, \, 5)_8$  über ein Polynom ermitteln.  Man kann aber das Codewort  $\underline{c}$  auch aus dem Informationswort  $\underline{u}$  und der Generatormatrix  $\mathbf{G}$  gemäß der folgenden Gleichung bestimmen:

$$\underline {c} = \underline {u} \cdot { \boldsymbol{\rm G}} \hspace{0.05cm}.$$
  • Zwei dieser Generatormatrizen beschreiben den  $\rm RSC \, (7, \, 3, \, 5)_8$.  In der Teilaufgabe  (1)  ist explizit gefragt,  welche.
  • Eine weitere Generatormatrix gehört zum  $\rm RSC \, (7, \, 5, \, 3)_8$,  der in der Teilaufgabe  (3)  betrachtet wird.



Hinweise:

  • Weitere Informationen zu den Reed–Solomon–Codes finden Sie in der  "Aufgabe 2.7".



Fragebogen

1

Welche der Generatorpolynome beschreiben den   $\rm RSC \, (7, \, 3, \, 5)_8$?

Die Matrix  $\mathbf{G}_{\rm A}$,
die Matrix  $\mathbf{G}_{\rm B}$,
die Matrix  $\mathbf{G}_{\rm C}$,
die Matrix  $\mathbf{G}_{\rm D}$.

2

Die Informationsfolge beginnt mit   $\alpha^4, \, 1, \, \alpha^3, \, 0, \, \alpha^6$.   Bestimmen Sie das erste Codewort für den  $\rm RSC \, (7, \, 3, \, 5)_8$.

Es gilt  $c_0 = \alpha^2$,
Es gilt  $c_1 = \alpha^3$,
Es gilt  $c_6 = 0$.

3

Wie lautet bei gleicher Informationsfolge das Codewort für den  $\rm RSC \, (7, \, 5, \, 3)_8$?

Es gilt  $c_0 = 1$,
Es gilt  $c_1 = 0$,
Es gilt  $c_6 = \alpha^6$.


Musterlösung

(1)  Richtig sind die  Lösungsvorschläge 2 und 3   ⇒   Matrizen  $\mathbf{G}_{\rm B}$  und  $\mathbf{G}_{\rm C}$.

  • In der Matrix  $\mathbf{G}_{\rm C}$  wurden bereits die erlaubten Umformungen   $\alpha^8 = \alpha, \ \alpha^{10} = \alpha^3$   und   $\alpha^{12} = \alpha^5$   berücksichtigt.
  • Die Matrix  $\mathbf{G}_{\rm A}$  gilt für den  $(7, \, 5, \, 3)$–Hamming–Code und  $\mathbf{G}_{\rm D}$  gehört zum  $\rm RSC \, (7, \, 5, \, 3)_8$.  Siehe hierzu Teilaufgabe  (3).


(2)  Beim  $\rm RSC \, (7, \, 3, \, 5)_8$  werden in jedem Codierschritt  $k = 3$  Informationssymbole verarbeitet,  im Codierschritt 1 gemäß der Angabe die Symbole  $\alpha^4, \ 1$  und  $\alpha^3$.

  • Mit der Generatormatrix $\mathbf{G}_{\rm C}$ gilt somit:
$$\underline {c} = \underline {u} \cdot { \boldsymbol{\rm G}}_{\rm C} = \begin{pmatrix} \alpha^4 & 1 & \alpha^3 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1\\ 1 & \alpha^1 & \alpha^2 & \alpha^3 & \alpha^4 & \alpha^5 & \alpha^6\\ 1 & \alpha^2 & \alpha^4 & \alpha^6 & \alpha^1 & \alpha^{3} & \alpha^{5} \end{pmatrix}\hspace{0.05cm}. $$
$\rm GF(2^3)$  als Potenzen, Polynome und Vektoren
  • Damit ergibt sich entsprechend der nebenstehenden Hilfstabelle:
$$c_0 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha^{4}\cdot 1 + 1 \cdot 1 + \alpha^{3}\cdot 1 = (110) + (001) + (011)= (100) = \alpha^{2} \hspace{0.05cm},$$
$$c_1 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha^{4}\cdot 1 + 1 \cdot \alpha + \alpha^{3}\cdot \alpha^{2}= (110) + (010) + (110) = (011) = \alpha^{3} \hspace{0.05cm},$$
$$c_2 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha^{4}\cdot 1 + 1 \cdot \alpha^{2} + \alpha^{3}\cdot \alpha^{4}= (110) + (100) + (001) = (011) = \alpha^{3} \hspace{0.05cm},$$
$$c_3 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha^{4}\cdot 1 + 1 \cdot \alpha^{3} + \alpha^{3}\cdot \alpha^{6}=$ (110) + (011) + (100) = (001) = 1 \hspace{0.05cm},$$
$$c_4 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha^{4}\cdot 1 + 1 \cdot \alpha^{4} + \alpha^{3}\cdot \alpha^{1} = \alpha^{4} \hspace{0.05cm},$$
$$c_5 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha^{4}\cdot 1 + 1 \cdot \alpha^{5} + \alpha^{3}\cdot \alpha^{3}= (110) + (111) + (101) = (100) = \alpha^{2} \hspace{0.05cm},$$
$$c_6 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha^{4}\cdot 1 + 1 \cdot \alpha^{6} + \alpha^{3}\cdot \alpha^{5}= (\alpha^{2} + \alpha) + (\alpha^2 +1) + \alpha = 1 \hspace{0.05cm}.$$
  • Man erhält das genau gleiche Ergebnis wie in der  (4)  von  "Aufgabe 2.7".  Richtig sind die  Lösungsvorschläge 1 und 2.
  • Es gilt also nicht  $c_6 = 0$,  sondern  $c_6 = 1$.


(3)  Beim  $\rm RSC \, (7, \, 5, \, 3)_8$  ist das Informationswort  $\underline{u} = (u_0, \, u_1, \, u_2, \, u_3, \, u_4)$  zu berücksichtigen.

  • Mit der Generatormatrix  $\mathbf{G}_{\rm D}$  erhält man:
$$\underline {c} = \underline {u} \cdot { \boldsymbol{\rm G}}_{\rm D} = \begin{pmatrix} \alpha^4 & 1 & \alpha^3 & 0 & \alpha^6 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1\\ 1 & \alpha^1 & \alpha^2 & \alpha^3 & \alpha^4 & \alpha^5 & \alpha^6\\ 1 & \alpha^2 & \alpha^4 & \alpha^6 & \alpha^1 & \alpha^{3} & \alpha^{5}\\ 1 & \alpha^3 & \alpha^6 & \alpha^2 & \alpha^5 & \alpha^{1} & \alpha^{4}\\ 1 & \alpha^4 & \alpha^1 & \alpha^5 & \alpha^2 & \alpha^{6} & \alpha^{3} \end{pmatrix}\hspace{0.05cm}. $$
  • Daraus folgt:
$$c_0 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha^{4}\cdot 1 + 1 \cdot 1 + \alpha^{3}\cdot 1 + 0 \cdot 1 + \alpha^{6}\cdot 1= (110) + (001) + (011) + (000) + (101) = (001) = 1 \hspace{0.05cm},$$
$$c_1 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \left [ \alpha^{4}\cdot 1 + 1 \cdot \alpha + \alpha^{3}\cdot \alpha^{2} \right ] + 0 \cdot \alpha^{3} + \alpha^{6}\cdot \alpha^{4}= \left [ \alpha^{3} \right ] + \alpha^{3} = 0 \hspace{0.05cm}.$$
  • Hierbei ist berücksichtigt,  dass der Klammerausdruck  $[ \ \text{...} \ ]$  genau dem Ergebnis  $c_1$  der Teilaufgabe  (2)  entspricht.
  • Entsprechendes wird auch bei den folgenden Berechnungen berücksichtigt:
$$c_2 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \left [ \alpha^{3} \right ] + \alpha^{6}\cdot \alpha^{1}= \left [ \alpha^{3} \right ] + \alpha^{7} = (011) + (001) = (010) = \alpha^{1} \hspace{0.05cm},$$
$$c_3 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \left [ 1 \right ] + \alpha^{6}\cdot \alpha^{5}= \left [ 1 \right ] + \alpha^{4}= (001) + (110) = (111) = \alpha^{5} \hspace{0.05cm},$$
$$c_4 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \left [ \alpha^{4} \right ] + \alpha^{6}\cdot \alpha^{2}= \left [ \alpha^{4} \right ] + \alpha^{1} = (110) + (010) = (100) = \alpha^{2} \hspace{0.05cm},$$
$$c_5 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \left [ \alpha^{2} \right ] + \alpha^{6}\cdot \alpha^{6}= \left [ \alpha^{2} \right ] + \alpha^{5} = (100) + (111) = (011) = \alpha^{3} \hspace{0.05cm},$$
$$c_6 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \left [ 1 \right ] + \alpha^{6}\cdot \alpha^{3}= \left [ 1 \right ] + \alpha^{2} = (001) + (100) = (101) = \alpha^{6} \hspace{0.05cm}.$$
  • Das heißt:  Alle Lösungsvorschläge sind richtig.