Aufgabe 3.5: Schaltung mit R, L und C

Aus LNTwww
Wechseln zu:Navigation, Suche

Vierpol mit  $R$,  $L$ und  $C$

Wir betrachten einen Vierpol mit dem Widerstand  $R = 100 \ \rm \Omega$  im Längszweig,  während im Querzweig eine Induktivität  $L$  und eine Kapazität  $C$  in Serie geschaltet sind.  Darunter gezeichnet ist das Pol–Nullstellen–Diagramm.

Beachten Sie die Normierung der komplexen Frequenz  $p = {\rm j} \cdot 2 \pi f$  auf den Wert  $1/T$  mit  $T = 1 \ \rm µ s$.  Dies hat zur Folge, dass zum Beispiel der Pol bei  $-1$  in Realität bei  $-10^6 \cdot \ \rm 1/s$  liegt.

Zur Berechnung von Zeitfunktionen kann man den Residuensatz anwenden:

  • Bei  $N$  einfachen Polen setzt sich der Ausgang  $y(t)$  aus  $N$  Eigenschwingungen ("Residuen")  zusammen.
  • Bei einem einfachen Pol bei  $p_{{\rm x}i}$  gilt für das das Residuum:
$${\rm Res} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}i}} \hspace{-0.7cm}\{Y_{\rm L}(p)\cdot {\rm e}^{p t}\}= Y_{\rm L}(p)\cdot (p - p_{{\rm x}i})\cdot {\rm e}^{\hspace{0.05cm}p \hspace{0.05cm}t} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}i}} \hspace{0.05cm} .$$
Dieser Ansatz funktioniert aber nur dann, wenn die Anzahl  $Z$  der Nullstellen kleiner ist als  $N$,  in dieser Aufgabe beispielsweise dann,  wenn die Sprungantwort  $\sigma(t)$  berechnet wird.  In diesem Fall ist  $Z = 2$  und  $N = 3$,  da zusätzlich die Sprungfunktion am Eingang durch  $X_{\rm L}(p) = 1/p$  berücksichtigt werden muss.
  • Für die Berechnung der Impulsantwort  $h(t)$  funktioniert diese Vorgehensweise wegen  $Z = N =2$  nicht.
  • Hier kann man die Tatsache berücksichtigen,  dass das Integral über die Impulsantwort  $h(t)$  die Sprungantwort  $\sigma(t)$  ergibt.



Hinweis:



Fragebogen

1

Welche Funktion hat der hier betrachtete Vierpol?  Handelt es sich um

einen Tiefpass,
einen Hochpass,
einen Bandpass,
eine Bandsperre?

2

Berechnen Sie  $L$  und  $C$  für die vorgegebene Pol–Nullstellen–Konfiguration.  Berücksichtigen Sie den Normierungswert  $1/T$  und den Widerstand  $R = 100 \ \rm \Omega$.

$L \hspace{0.24cm} = \ $

$\ \rm µ H$
$C \hspace{0.2cm} = \ $

$\ \rm nF$

3

Berechnen Sie das Ausgangssignal  $y(t) = \sigma(t)$,  wenn am Eingang eine Sprungfunktion  $x(t) = \gamma(t)$ anliegt.  Geben Sie die folgenden Signalwerte ein:

$y(t = 0) \ = \ $

$y(t = 0.5 \ \rm µ s) \ = \ $

$y(t = 2.0 \ \rm µ s) \ = \ $

$y(t = 5.0 \ \rmµ s) \ = \ $

4

Berechnen Sie die Impulsantwort  $h(t)$,  insbesondere für die Zeitpunkte  $t = 0$  und  $t = 1 \ \rm µ s$.  Welche der folgenden Aussagen treffen zu?

$h(t)$  beinhaltet eine Diracfunktion bei  $t = 0$.
Der kontinuierliche Anteil von  $h(t)$  ist im gesamten Bereich negativ.
Der kontinuierliche Anteil von  $h(t)$  besitzt ein Maximum.


Musterlösung

(1)  Richtig ist der  Lösungsvorschlag 4:

  • Bei extrem tiefen Frequenzen  $(f \rightarrow 0)$  hat die Kapazität  $C$  einen unendlich großen Widerstand und bei sehr hohen Frequenzen  $(f \rightarrow \infty)$  die Induktivität  $L$.
  • In beiden Fällen gilt  $Y(f) = X(f)$   ⇒   $H(f) = 1$.
  • Bei der Resonanzfrequenz  $f_0$  wirkt dagegen die LC–Serienschaltung als Kurzschluss und es gilt  $H(f = f_0) = 0$.
  • Daraus folgt allein aus dem Blockschaltbild:   Es handelt sich um eine Bandsperre.


(2)  Aus dem Pol–Nullstellen–Diagramm ergibt sich die folgende  $p$–Übertragungsfunktion  $($ohne den Normierungsfaktor  $1/T)$:

$$H_{\rm L}(p)= \frac {(p - {\rm j} \cdot 2)(p + {\rm j} \cdot 2)} {(p +1)(p +4 )}= \frac {p^2 +4} {p^2 + 5 \cdot p +4} \hspace{0.05cm} .$$
  • Unter Berücksichtigung der Spannungsteilereigenschaften erhält man mit dem Blindwiderstand  $p \cdot L$  der Induktivität und dem Blindwiderstand  $1/(p \cdot C)$  der Kapazität für die Schaltung:
$$H_{\rm L}(p)= \frac { p\cdot L +1/(pC) } {R + p \cdot L +1/(pC) }= \frac { p^2 +1/(pC) } {p^2 + p \cdot {R}/{L} +1/(pC) }\hspace{0.05cm} .$$
  • Durch Vergleich erkennt man unter Berücksichtigung des Normierungsfaktors  $1/T= 10^6 \cdot \rm 1/s$:
$${R}/{L} \hspace{0.25cm} = \hspace{0.2cm} 5 \cdot 10^{6 }\, {\rm 1/s} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}L= \frac{100\, {\rm \Omega}}{5 \cdot 10^6 \, {\rm 1/s}}\hspace{0.15cm}\underline{= 20\,{\rm µ H} \hspace{0.05cm}} ,$$
$${1}/({LC}) \hspace{0.25cm} = \hspace{0.2cm}4 \cdot 10^{12 }\, {\rm 1/s^2} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}C= \frac{1}{4 \cdot 10^{12 }\, {\rm 1/s^2}\cdot 2 \cdot 10^{-5 }\, {\rm \Omega \cdot s} } \hspace{0.15cm}\underline{= 12.5\,{\rm nF}} \hspace{0.05cm} .$$


(3)  Die Sprungfunktion am Eingang wird durch  $X_{\rm L}(p) = 1/p$  berücksichtigt.  Damit ergibt sich

$$Y_{\rm L}(p)= \frac {p^2 +4} {p \cdot (p +1)\cdot(p +4 )} \hspace{0.05cm} ,$$

woraus man durch Anwendung des Residuensatzes die Zeitfunktion  $y(t)$  ermitteln kann:

$$y_1(t) \hspace{0.25cm} = \hspace{0.2cm} \frac {p^2 +4} { (p +1)\cdot(p +4 )} \cdot {\rm e}^{\hspace{0.05cm}p \hspace{0.05cm}t} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}0}= 1 \hspace{0.05cm} ,$$
$$ y_2(t) \hspace{0.25cm} = \hspace{0.2cm} \frac {p^2 +4} { p\cdot(p +4 )} \cdot {\rm e}^{\hspace{0.05cm}p \hspace{0.05cm}t} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}-1}= - {5}/{3}\cdot {\rm e}^{ \hspace{0.05cm}-t} \hspace{0.05cm} ,$$
$$ y_3(t) \hspace{0.25cm} = \hspace{0.2cm} \frac {p^2 +4} { p\cdot(p +1 )} \cdot {\rm e}^{\hspace{0.05cm}p \hspace{0.05cm}t} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}-4}= {5}/{3}\cdot {\rm e}^{ \hspace{0.05cm}-4t}$$
$$\Rightarrow \hspace{0.3cm}y(t)= y_1(t)+y_2(t)+y_3(t)= 1- {5}/{3}\cdot {\rm e}^{ \hspace{0.05cm}-t/T}+\ {5}/{3}\cdot {\rm e}^{ \hspace{0.05cm}-4t/T} \hspace{0.05cm} .$$
Sprungantwort des RLC–Schwingkreises

Hierbei ist berücksichtigt, dass die bei dieser Rechnung nicht berücksichtigte Konstante  $10^6 \cdot \rm 1/s$  durch die Zeitnormierung auf  $T = 1 \ \rm µ s$  ausgeglichen wird.

Die gesuchten Signalwerte lauten:

$$y(t = 0) \hspace{0.05cm}\underline{= 1.000}\hspace{0.05cm}, \hspace{0.15cm}y(t = 0.5\,{\rm µ s}) \hspace{0.05cm}\underline{= 0.215}\hspace{0.05cm}, $$
$$y(t = 2\,{\rm µ s}) \hspace{0.05cm}\underline{= 0.775}\hspace{0.05cm}, \hspace{0.15cm}y(t = 5\,{\rm µ s}) \hspace{0.05cm}\underline{= 0.989}\hspace{0.05cm}. $$

Die Grafik zeigt den Signalverlauf.  Die gesuchten Zahlenwerte sind nochmals eingetragen.

Man erkennt aus dieser Darstellung:

  • Da extrem hohe Frequenzen durch das System (Bandsperre) nicht beeinflusst werden, ist auch im Ausgangssignal  $y(t)$  der Sprung von  $0$  auf  $1$  mit unendlich großer Flankensteilheit zu erkennen.
  • Wegen  $H(f = 0) = 1$  ergibt der Grenzwert von  $y(t)$  für  $t → \infty$  folgerichtig ebenfalls den Wert  $1$.
  • Aufgrund der LC–Resonanzfrequenz bei  $f_0 = 1/\pi$  (in  $\rm MHz)$  kommt es zu einem Einbruch im Signalverlauf.
  • Das Signalminimum von  $\approx 0.215$  liegt bei etwa  $t = 0.5 \ \rm µ s$.


Impulsantwort des RLC–Tiefpasses

(4)  Richtig sind die  Lösungsvorschläge 1 und 3:

  • Die Impulsantwort  $h(t)$  ergibt sich aus der Sprungantwort  $\sigma(t)=y(t)$  durch Differentiation:
$$h(t)= \frac{{\rm d}\hspace{0.1cm}y(t)}{{\rm d}t}= \delta (t) + \frac {5}{3T}\cdot {\rm e}^{ \hspace{0.05cm}-t/T}- \frac {20}{3T}\cdot {\rm e}^{ \hspace{0.05cm}-4t/T} \hspace{0.05cm} .$$
  • Der erste Lösungsvorschlag ist somit richtig, da die Differentiation einer Sprungfunktion die Diracfunktion liefert.
  • Für den kontinuierlichen Anteil von  $h(t)$  erhält man folgende Zahlenwerte:
$$T \cdot h(t = 0 )\hspace{0.25cm} = \hspace{0.2cm} {5}/{3}- {20}/{3}= -5 \hspace{0.05cm} ,$$
$$ T \cdot h(t = T )\hspace{0.25cm} = \hspace{0.2cm} {5}/{3}\cdot {\rm e}^{ \hspace{0.05cm}-1}- {20}/{3}\cdot {\rm e}^{ \hspace{0.05cm}-4}= {5}/{3}\cdot 0.368- {20}/{3}\cdot 0.018\approx 0.491 \hspace{0.05cm} .$$
  • Da  $h(t)$  im Grenzfall für  $t → \infty$  gegen Null strebt,  ist der dritte Lösungsvorschlag ebenfalls richtig im Gegensatz zum zweiten.
  • Der Verlauf von  $h(t)$  ist in der nebenstehenden Grafik dargestellt.