Inhaltsverzeichnis
Allgemeines Blockschaltbild
Jedes Signal $x(t)$ kann an einem Rechner nur durch die Folge $〈x_ν〉$ seiner Abtastwerte dargestellt werden, wobei $x_ν$ für $x(ν · T_{\rm A})$ steht.
- Der zeitliche Abstand $T_{\rm A}$ zwischen zwei Abtastwerten ist dabei durch das Abtasttheorem nach oben begrenzt.
- Um den Einfluss eines linearen Filters mit Frequenzgang $H(f)$ auf das zeitdiskrete Signal $〈x_ν〉$ zu erfassen, bietet es sich an, auch das Filter zeitdiskret zu beschreiben.
- Rechts sehen Sie das entsprechende Blockschaltbild.
Für die Abtastwerte des Ausgangssignals gilt somit:
- $$y_\nu = \sum\limits_{\mu = 0}^M {a_\mu } \cdot x_{\nu - \mu } + \sum\limits_{\mu = 1}^M {b_\mu } \cdot y_{\nu - \mu } .$$
Das Applet "Digitale Filter" verdeutlicht den Themenkomplex dieses Kapitels.
Hierzu ist Folgendes zu bemerken:
- Die erste Summe beschreibt die Abhängigkeit des aktuellen Ausgangs $y_ν$ vom aktuellen Eingang $x_ν$ und von den $M$ vorherigen Eingangswerten $x_{ν–1}$, ... , $x_{ν–M}.$
- Die zweite Summe kennzeichnet die Beeinflussung von $y_ν$ durch die vorherigen Werte $y_{ν–1}$, ... , $y_{ν–M}$ am Filterausgang. Sie gibt somit den rekursiven Teil des Filters an.
- Man bezeichnet den ganzzahligen Parameter $M$ als die "Ordnung" des digitalen Filters.
Nichtrekursives Filter
$\text{Definition:}$ Sind alle Rückführungskoeffizienten $b_{\mu} = 0$, so spricht von einem nichtrekursiven Filter. Ansonsten spricht man von einem "rekursiven Filter".
Ein solches nichtrekursives Filter $M$–ter Ordnung besitzt folgende Eigenschaften:
- Der Ausgangswert $y_ν$ hängt nur vom aktuellen und den $M$ vorherigen Eingangswerten ab:
- $$y_\nu = \sum\limits_{\mu = 0}^M {a_\mu \cdot x_{\mu - \nu } } .$$
- Die Filterimpulsantwort erhält man daraus mit $x(t) = δ(t)$:
- $$h(t) = \sum\limits_{\mu = 0}^M {a_\mu \cdot \delta ( {t - \mu \cdot T_{\rm A} } )} .$$
- Entsprechendes Eingangssignal in zeitdiskreter Schreibweise:
$x_ν ≡0$ mit Ausnahme von $x_0 =1$.
- Durch Anwendung des Verschiebungssatzes folgt daraus für den Filterfrequenzgang:
- $$H(f) = \sum\limits_{\mu = 0}^M {a_\mu \cdot {\rm{e}}^{ - {\rm{j}}\hspace{0.05cm} \cdot \hspace{0.05cm}2{\rm{\pi }}\hspace{0.05cm} \cdot \hspace{0.05cm}f \hspace{0.05cm} \cdot \hspace{0.05cm} \mu \hspace{0.05cm} \cdot \hspace{0.05cm} T_{\rm A} } } .$$
$\text{Beispiel 1:}$ Ein Zweiwegekanal, bei dem
- das Signal auf dem Hauptpfad gegenüber dem Eingangssignal ungedämpft, aber um $2\ \rm µ s$ verzögert ankommt, und
- in $4\ \rm µ s$ Abstand – also absolut zur Zeit $t = 6\ \rm µ s$ – ein Echo mit halber Amplitude nachfolgt,
kann durch ein nichtrekursives Filter entsprechend obiger Skizze nachgebildet werden, wobei folgende Parameterwerte einzustellen sind:
- $$M = 3,\quad T_{\rm A} = 2\;{\rm{µ s} },\quad a_{\rm 0} = 0,\quad a_{\rm 1} = 1, \quad a_{\rm 2} = 0, \quad a_{\rm 3} = 0.5.$$
Rekursives Filter
$\text{Definition:}$ Sind alle Vorwärtskoeffizienten $a_\nu \equiv 0$ mit Ausnahme von $a_0$, so liegt ein (rein) rekursives Filter vor.
Im Folgenden beschränken wir uns auf den Sonderfall $M = 1$ $($Blockschaltbild entsprechend der Grafik$)$. Dieses Filter weist folgende Eigenschaften auf:
- Der Ausgangswert $y_ν$ hängt (indirekt) von unendlich vielen Eingangswerten ab:
- $$y_\nu = \sum\limits_{\mu = 0}^\infty {a_0 \cdot {b_1} ^\mu \cdot x_{\nu - \mu } .}$$
- Dies zeigt die folgende Rechung:
- $$y_\nu = a_0 \cdot x_\nu + b_1 \cdot y_{\nu - 1} = a_0 \cdot x_\nu + a_0 \cdot b_1 \cdot x_{\nu - 1} + {b_1} ^2 \cdot y_{\nu - 2}. $$
$\text{Definition:}$
- Die zeitdiskrete Impulsantwort $〈\hspace{0.05cm}h_\mu\hspace{0.05cm}〉$ ist definitionsgemäß gleich der Ausgangsfolge, wenn am Eingang eine einzelne „Eins” bei $t =0$ anliegt.
- Bei einem rekursiven Filter reicht die zeitdiskrete Impulsantwort schon mit $M = 1$ bis ins Unendliche:
- $$h(t)= \sum\limits_{\mu = 0}^\infty {a_0 \cdot {b_1} ^\mu \cdot \delta ( {t - \mu \cdot T_{\rm A} } )}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}〈\hspace{0.05cm}h_\mu\hspace{0.05cm}〉= 〈\hspace{0.05cm}a_0, \ a_0\cdot {b_1}, \ a_0\cdot {b_1}^2, \ a_0\cdot {b_1}^3, \ \text{...} \hspace{0.05cm}〉.$$
Weiter ist anzumerken:
- Aus Stabilitätsgründen muss $b_1 < 1$ gelten.
- Bei $b_1 = 1$ würde sich die Impulsantwort $h(t)$ bis ins Unendliche erstrecken und bei $b_1 > 1$ würde $h(t)$ sogar bis ins Unendliche anklingen.
- Bei einem solchen rekursiven Filter erster Ordnung ist jede einzelne Diraclinie genau um den Faktor $b_1$ kleiner als die vorherige Diraclinie:
- $$h_{\mu} = h(\mu \cdot T_{\rm A}) = {b_1} \cdot h_{\mu -1}.$$
$\text{Beispiel 2:}$ Die nebenstehende Grafik zeigt die zeitdiskrete Impulsantwort $〈\hspace{0.05cm}h_\mu\hspace{0.05cm}〉$ eines rekursiven Filters erster Ordnung mit den Parametern $a_0 = 1$ und $b_1 = 0.6$.
- Der Verlauf ist exponentiell abfallend und erstreckt sich bis ins Unendliche.
- Das Verhältnis der Gewichte zweier aufeinander folgender Diracs ist jeweils $b_1 = 0.6$.
Aufgaben zum Kapitel
Aufgabe 5.3: Digitales Filter 1. Ordnung
Aufgabe 5.3Z: Nichtrekursives Filter