Principle of 4B3T Coding

© 2021 Institute for Communications Engineering, Technical University of Munich
Authors: Carolin Mirschina & Tasnad Kernetzky
$\rm{Source \ symbol \ sequence}$
$\rm{A}$
$\rm{B}$
$\rm{C}$
bit 1-4
bit 5-8
bit 9-12

$t/T_q$
1
2
3
4
5
6
7
8
9
10
11
12
$q(t)$
−1
1

$t/T_c$
1
2
3
4
5
6
7
8
9
10
$c(t)$
−1
1

$\rm{MS43}$
$\rm{MMS43}$
$\rm{\underline{Running \ Digital \ Sum}}$
$\rm{Initial \ value \ } \it{\Sigma}$$_0 =$
$\rm{After \ block \ 1:}$
$\it{\Sigma}$$_1 =1$
$\rm{After \ block \ 2:}$
$\it{\Sigma}$$_2 =2$
$\rm{After \ block \ 3:}$
$\it{\Sigma}$$_3 =2$
MS43
$\it{\Sigma}_\rm{0} = 0$ 0 + -$\it{\Sigma}_\rm{1}=0$0 + 0$\it{\Sigma}_\rm{2}=1$+ - 0$\it{\Sigma}_\rm{3}=1$
$\it{\Sigma}_\rm{0} = 1$ 0 + -$\it{\Sigma}_\rm{1}=1$0 + 0$\it{\Sigma}_\rm{2}=2$+ - 0$\it{\Sigma}_\rm{3}=2$
$\it{\Sigma}_\rm{0} = 2$ 0 + -$\it{\Sigma}_\rm{1}=2$0 + 0$\it{\Sigma}_\rm{2}=3$+ - 0$\it{\Sigma}_\rm{3}=3$
$\it{\Sigma}_\rm{0} = 3$ 0 + -$\it{\Sigma}_\rm{1}=3$- 0 -$\it{\Sigma}_\rm{2}=1$+ - 0$\it{\Sigma}_\rm{3}=1$
MMS43
$\it{\Sigma}_\rm{0} = 0$ 0 0 +$\it{\Sigma}_\rm{1}=1$+ + -$\it{\Sigma}_\rm{2}=2$0 - +$\it{\Sigma}_\rm{3}=2$
$\it{\Sigma}_\rm{0} = 1$ 0 0 +$\it{\Sigma}_\rm{1}=2$+ - -$\it{\Sigma}_\rm{2}=1$0 - +$\it{\Sigma}_\rm{3}=1$
$\it{\Sigma}_\rm{0} = 2$ 0 0 +$\it{\Sigma}_\rm{1}=3$+ - -$\it{\Sigma}_\rm{2}=2$0 - +$\it{\Sigma}_\rm{3}=2$
$\it{\Sigma}_\rm{0} = 3$ - - 0$\it{\Sigma}_\rm{1}=1$+ + -$\it{\Sigma}_\rm{2}=2$0 - +$\it{\Sigma}_\rm{3}=2$
Exercises

* First, select the number  $(1,\ 2, \text{...} \ )$  of the task to be processed.  The number  $0$  corresponds to a "Reset":  Same setting as at program start.
* A task description is displayed.  The parameter values are adjusted.  Solution after pressing "Show Solution".
* Both the input signal  $x(t)$  and the filter impulse response  $h(t)$  are normalized, dimensionless and energy-limited ("time-limited pulses").
* All times, frequencies, and power values are to be understood normalized, too.