Binomial & Poisson Distribution

© 2018 Institute for Communications Engineering, Technical University of Munich
Authors: Jimmy He & Tasnad Kernetzky


$I =12$
$p =0.4$
$m_1 =4.8$
$m_2 =25.92$
$\sigma^2 =2.88$
$\sigma =1.7$


123456789100.10.20.30.40.50.6−0.1
o+
$\mu$
Pr$(z = \mu)$


$\lambda =3$
$m_1 =3$
$m_2 =12$
$\sigma^2 =3$
$\sigma =1.73$
$\mu$ 012345678910111213141516171819
Pr($z$ = $\mu$) 0.00220.01740.06390.14190.21280.22700.17660.10090.04200.01250.00250.00030.00000.00000.00000.00000.00000.00000.00000.0000
0.0498 0.14940.22400.22400.16800.10080.05040.02160.00810.00270.00080.00020.00010.00000.00000.00000.00000.00000.00000.0000
Pr($z$ ≤ $\mu$) 0.00220.01960.08340.22530.43820.66520.84180.94270.98470.99720.99971.00001.00001.00001.00001.00001.00001.00001.00001.0000
0.0498 0.19910.42320.64720.81530.91610.96650.98810.99620.99890.99970.99991.00001.00001.00001.00001.00001.00001.00001.0000
Exercises
For the following exercises,
the term Blue refers to distribution function 1 (marked blue in the applet) and
the term Red refers to distribution function 2 (marked red in applet)