Graphical Convolution

© 2021 Institute for Communications Engineering, Technical University of Munich
Authors: Carolin Mirschina & Tasnad Kernetzky
Input pulse
$A_x =$
1.00
$\Delta t_x =$
1.0
$\tau_x =$
1.0
Low-pass filter
$\Delta t_h =$
1.0
123−1−2−31
$\tau$
0.25
0.5
0.75
$x( \tau )$
123−1−2−31
$\tau$
0.25
0.5
0.75
$h(- \tau )$
$h( \tau )$
123−1−2−31
$\tau$
0.25
0.5
0.75
$x( \tau ) \cdot h(t- \tau )$
123−1−2−31
$t$
0.25
0.5
0.75
$y(t)$
Control panel
Selected Results
$t = $
$y(t) = $
$t_{ \max } = $
$y_{ \max } = $
$ \Delta t_y = $
Maximum error 2%
Exercises

* First, select the number  $(1,\ 2, \text{...} \ )$ of the task to be processed. The number  $0$ corresponds to a "Reset":  Same setting as at program start.
* A task description is displayed.  The parameter values are adjusted.  Solution after pressing "Show Solution".
* Both the input signal $x(t)$ and the impulse response  $h(t)$ of the filter are are normalized, dimensionless and energy-limited ("time-limited pulses").