The following curves are on display:
blue: the input signal $x(t) = x_1(t) + x_2(t) = A_1\cdot \cos\left(2\pi f_1\cdot t- \varphi_1\right)+A_2\cdot \cos\left(2\pi f_2\cdot t- \varphi_2\right), $
red: output signal $y(t) = \alpha_1 \cdot x_1(t-\tau_1) + \alpha_2 \cdot x_2(t-\tau_2),$
green: the matching output signal $z(t)= k_{\rm M} \cdot y(t-\tau_{\rm M}) + \alpha_2 \cdot x_2(t-\tau_2),$
magenta: the difference signal $\varepsilon(t) = z(t) - x(t)$ ⇒ Power $P_\varepsilon$.
undefined