Signals, ACF and PDS of Pseudo-Ternary Codes

© 2021 Institute for Communications Engineering, Technical University of Munich
Authors: Carolin Mirschina & Tasnad Kernetzky
$q(t)$
$b(t)$
$\rm{xor}$
$+$
$+$
$-$
$+1$
$T$
$+1$
$T$
$0.5$
$c(t)$
$g(t)$
$s(t)$
$\textbf{Coding}$
$\rm{AMI}$
$\rm{Duobinary}$
$\rm{Bip \ 2}$
$\textbf{Basic transmitter pulse}$
$\rm{Rectangular \ pulse}$
$\rm{Nyquist \ pulse}$
$\rm{Root \ raised \ cosine \ pulse}$
$\rm{Roll-off \ factor}$
$r = $
bit 1-3 bit 4-6 bit 7-9 bit 10-12

$\nu = t/T$
1
2
3
4
5
6
7
8
9
10
11
12
−1
1
$q(t)$

$\nu = t/T$
1
2
3
4
5
6
7
8
9
10
11
12
−1
1
$b(t)$

$\nu = t/T$
1
2
3
4
5
6
7
8
9
10
11
12
−1
1
$c(t)$

$\nu = t/T$
1
2
3
4
5
6
7
8
9
10
11
12
−1
1
$s(t)$

$\rm{Source \ symbol \ sequence}$
$\rm{A}$
$\rm{B}$
$\rm{C}$
Exercises