Complementary Gaussian Error Functions

© 2018 Institute for Communications Engineering, Technical University of Munich
Authors: Marwen Ben Ammar, Xiaohan Liu, Carolin Mirschina & Tasnad Kernetzky
$\frac{1-x^{-2}}{\sqrt{2 \pi} \cdot x} \rm{e}$$^{-x^{2} / 2}$
$\leq \rm{Q}$$(x)= \frac{1}{\sqrt{2 \pi}} \int\limits_{x}^{\infty} \rm{e}$$^{-u^2 / 2} \rm{d}$$u \leq$
$\frac{1}{\sqrt{2 \pi} \cdot x} \rm{e}$$^{-x^{2} / 2}$
$\rm{Lower \ Bound \ (LB)}$
$\rm{Q}$$(x)$
$0.5 \cdot \rm{erfc}$$(x)$
$\rm{Upper \ Bound \ (UB)}$
$\rm{linear}$
$\rm{Abscissa}$
$\rm{logarithmic}$
$\rm{linear}$
$\rm{Ordinate}$
$\rm{logarithmic}$
$x =1 \ \ \ \Rightarrow \ \ \ \rho \rm{[dB]} = $ $ 20 \cdot \lg(x) =0$
$\rm{Q}$$(x) =1.5866\cdot 10^{-1}$
$\rm{LB} = $ $0\cdot 10^{-10}$
$\rm{UB} = $ $2.4197\cdot 10^{-1}$
$x=1$
$\rho \ \rm{[dB]} = $ $ 3$
1234567
o+
$x$
$\rm{Q}$$(x)$
$ 10^{-10}$
$ 10^{-8}$
$ 10^{-6}$
$ 10^{-4}$
$ 10^{-2}$
$ 10^{0}$
1234567
o+
$x$
$0.5 \cdot \rm{erf}$$(x)$
$10^{-10}$
$10^{-8}$
$10^{-6}$
$10^{-4}$
$10^{-2}$
$10^{0}$
Exercises