Capacity of Memoryless Digital Channels

© 2021 Institute for Communications Engineering, Technical University of Munich
Authors: Veronika Hofmann, Carolin Mirschina, Tasnad Kernetzky & Benedikt Leible
$p_\mathrm{A} =$
0.1
$\Rightarrow p_\mathrm{B} =$
0.9
$p_\mathrm{b|A} =$
0.05
$\Rightarrow p_\mathrm{a|A} =$
0.95
$p_\mathrm{a|B} =$
0.4
$\Rightarrow p_\mathrm{b|B} =$
0.6
Binary source
Symbol probabilities
Transition probabilities

Exemplary source symbol sequence $\langle \hspace{0.05cm} X_n\hspace{0.05cm} \rangle$
Exemplary sink symbol sequence $\langle \hspace{0.05cm} Y_n\hspace{0.05cm} \rangle$
$H(XY) =$

Gerichtete Darstellung.

$H(X)$
$H(Y)$
$H(X|Y)$
$H(Y|X)$
$I(X;Y)$
Results of the analytical calculation for the binary channel
BBBBBABBBBBBABBBBBBBBBBBBBBBBBBBBBBBAAAB
ABBBBBBBBBBBBBBBBBBBBBBABBBBBBBBABBBBBBB
BBBBAABBABBBABBBBBBAABBAABBBBBBBBBBBBBAB
BBBBBBABBBBBBBBBBBBBBBBBBBBBBABBBBBBBBBB
BBBBBBBBBBABBBBBBBBABBBBBBABBBBBBBBBABBB
bbbbaabbbbabaababbbaaaaabbabbbabbbbaaaab
aaabbbbabaabbababaaaaaaabbbbaabbabbbabab
bbbaaabaababaababaaaaabaabbababbbbbbabaa
bababbabbbabbbabaaaabaaaababbabaababbabb
aaaabaabaaabbbbabababbabababaabbbbbaabbb
            1.371
0.4690.902
0.3770.994
0.3770.0920.902
0.469
0.377
0.092
0.994
0.902
Composite probabilities
$\mathrm{Pr}(X \cap Y)$
Conditional probabilities
$\mathrm{Pr}(Y | X)$
Inference probabilities
$\mathrm{Pr}(X | Y)$
ab
A0.0950.005
B0.360.54
ab
A0.950.05
B0.40.6
ab
A0.20880.0092
B0.79120.9908
Exercises