Aufgaben:Aufgabe 2.7: Nochmals Zweiwegekanal: Unterschied zwischen den Versionen
Nabil (Diskussion | Beiträge) (Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Lineare zeitinvariante Systeme/Lineare Verzerrungen }} right| :Wie in der Aufgabe A2.6 wird ein Zwei…“) |
|||
Zeile 3: | Zeile 3: | ||
}} | }} | ||
− | [[Datei:P_ID914__LZI_A_2_7.png|right|]] | + | [[Datei:P_ID914__LZI_A_2_7.png|right|Frequenzgang des Zweiwegekanals]] |
− | + | Wie in [[Aufgaben:2.6_Zweiwegekanal|Aufgabe 2.6]] wird ein Zweiwegekanal betrachtet, für dessen Impulsantwort gelte: | |
− | + | $$h(t) = \delta ( t - T_1) + \delta ( t - T_2).$$ | |
− | + | Entgegen der allgemeinen Darstellung in Aufgabe 2.6 sind hier die beiden Dämpfungsfaktoren gleich: $z_1 = z_2 = 1$. Dies entspricht zum Beispiel beim Mobilfunk einem Echo im Abstand $T_2 - T_1$ in gleicher Stärke wie das Signal auf dem Hauptpfad. Für dieses wird die Laufzeit $T_1$ vorausgesetzt. | |
− | + | Mit den in den Teilaufgaben (1) ... (4) betrachteten Laufzeiten $T_1 = 0$ und $T_2 = T = 4 \ \rm ms$ erhält man für den Frequenzgang des Zweiwegekanals, dessen Betrag in der oberen Grafik dargestellt ist: | |
− | + | $$H(f) = 1 + {\rm e}^{-{\rm j}\hspace{0.04cm}2 \pi f T} = 1 + | |
\cos(2 \pi f T) - {\rm j} \cdot \sin(2 \pi f T)$$ | \cos(2 \pi f T) - {\rm j} \cdot \sin(2 \pi f T)$$ | ||
− | + | $$\Rightarrow \hspace{0.4cm}|H(f)| = \sqrt{2\left(1 + \cos(2 \pi f | |
T)\right)}= 2 \cdot |\cos(\pi f T)|.$$ | T)\right)}= 2 \cdot |\cos(\pi f T)|.$$ | ||
− | + | Die untere Grafik zeigt die Phasenfunktion: | |
− | + | $$b(f) = - {\rm arc} \hspace{0.1cm}H(f) = \arctan \frac{\sin(2 \pi f | |
T)}{1 + \cos(2 \pi f T)} = \arctan \left(\tan(\pi f T)\right).$$ | T)}{1 + \cos(2 \pi f T)} = \arctan \left(\tan(\pi f T)\right).$$ | ||
− | + | Hierbei wurde folgende trigonometrische Umformung benutzt: | |
− | + | $$ \frac{\sin(2 \alpha)}{1 + \cos(2 \alpha)} = \tan(\alpha).$$ | |
− | :Im Frequenzbereich | | + | Die untere Grafik zeigt diePhasenfunktion für $T_1 = 0$ und $T_2 = T = 4 \ \rm ms$: |
+ | *Im Frequenzbereich $|f| < 1/(2T)$ steigt $b(f)$ linear an: $b(f) = \pi \cdot f \cdot T.$ | ||
+ | *Auch in den weiteren Abschnitten der Phasenfunktion nimmt die Phase stets von $-\pi/2$ bis $+\pi/2$ linear zu. | ||
:Für die Teilaufgaben 1) bis 4) gelte <i>T</i><sub>1</sub> = 0 und <i>T</i><sub>2</sub> = <i>T</i> = 4 ms. Dagegen wird in der Teilaufgabe e) der Fall <i>T</i><sub>1</sub> = 1 ms, <i>T</i><sub>2</sub> = 5 ms betrachtet. Als Eingangssignale werden untersucht: | :Für die Teilaufgaben 1) bis 4) gelte <i>T</i><sub>1</sub> = 0 und <i>T</i><sub>2</sub> = <i>T</i> = 4 ms. Dagegen wird in der Teilaufgabe e) der Fall <i>T</i><sub>1</sub> = 1 ms, <i>T</i><sub>2</sub> = 5 ms betrachtet. Als Eingangssignale werden untersucht: | ||
Zeile 49: | Zeile 51: | ||
:Im Fragenkatalog bezeichnet <i>y<sub>i</sub></i>(<i>t</i>) das Signal am Ausgang des Zweiwegekanals, wenn am Eingang das Signal <i>x<sub>i</sub></i>(<i>t</i>) anliegt (<i>i</i> = 1, 2, 3, 4). | :Im Fragenkatalog bezeichnet <i>y<sub>i</sub></i>(<i>t</i>) das Signal am Ausgang des Zweiwegekanals, wenn am Eingang das Signal <i>x<sub>i</sub></i>(<i>t</i>) anliegt (<i>i</i> = 1, 2, 3, 4). | ||
+ | |||
+ | ''Hinweise:'' | ||
+ | *Die Aufgabe gehört zum Kapitel [[Lineare_zeitinvariante_Systeme/Lineare_Verzerrungen|Lineare Verzerrungen]]. | ||
+ | *Die Thematik „Amplitudenmodulation/Synchrondemodulator” wird im Buch [[Modulationsverfahren]] noch ausführlich diskutiert. | ||
+ | *Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein. | ||
+ | *Gegeben sind die folgenden trigonometrischen Zusammenhänge: | ||
+ | :$$\cos^2(\alpha) = {1}/{2} \cdot \left [ 1 + | ||
+ | \cos(2\alpha) \right ] \hspace{0.05cm}, $$ | ||
+ | :$$\cos(\alpha) \cdot \cos(\beta) = {1}/{2} \cdot \left[ \cos(\alpha - | ||
+ | \beta)+ \cos(\alpha + \beta) \right],$$ | ||
+ | :$$ \sin(\alpha) \cdot \cos(\beta) = {1}/{2} \cdot \left[ \sin(\alpha - | ||
+ | \beta)+ \sin(\alpha + \beta) | ||
+ | \right] \hspace{0.05cm}.$$ | ||
:<b>Hinweis:</b> Die Aufgabe bezieht sich auf den Theorieteil von Kapitel 2.3. | :<b>Hinweis:</b> Die Aufgabe bezieht sich auf den Theorieteil von Kapitel 2.3. |
Version vom 6. Februar 2017, 11:53 Uhr
Wie in Aufgabe 2.6 wird ein Zweiwegekanal betrachtet, für dessen Impulsantwort gelte: $$h(t) = \delta ( t - T_1) + \delta ( t - T_2).$$
Entgegen der allgemeinen Darstellung in Aufgabe 2.6 sind hier die beiden Dämpfungsfaktoren gleich: $z_1 = z_2 = 1$. Dies entspricht zum Beispiel beim Mobilfunk einem Echo im Abstand $T_2 - T_1$ in gleicher Stärke wie das Signal auf dem Hauptpfad. Für dieses wird die Laufzeit $T_1$ vorausgesetzt.
Mit den in den Teilaufgaben (1) ... (4) betrachteten Laufzeiten $T_1 = 0$ und $T_2 = T = 4 \ \rm ms$ erhält man für den Frequenzgang des Zweiwegekanals, dessen Betrag in der oberen Grafik dargestellt ist: $$H(f) = 1 + {\rm e}^{-{\rm j}\hspace{0.04cm}2 \pi f T} = 1 + \cos(2 \pi f T) - {\rm j} \cdot \sin(2 \pi f T)$$ $$\Rightarrow \hspace{0.4cm}|H(f)| = \sqrt{2\left(1 + \cos(2 \pi f T)\right)}= 2 \cdot |\cos(\pi f T)|.$$
Die untere Grafik zeigt die Phasenfunktion: $$b(f) = - {\rm arc} \hspace{0.1cm}H(f) = \arctan \frac{\sin(2 \pi f T)}{1 + \cos(2 \pi f T)} = \arctan \left(\tan(\pi f T)\right).$$
Hierbei wurde folgende trigonometrische Umformung benutzt: $$ \frac{\sin(2 \alpha)}{1 + \cos(2 \alpha)} = \tan(\alpha).$$
Die untere Grafik zeigt diePhasenfunktion für $T_1 = 0$ und $T_2 = T = 4 \ \rm ms$:
- Im Frequenzbereich $|f| < 1/(2T)$ steigt $b(f)$ linear an: $b(f) = \pi \cdot f \cdot T.$
- Auch in den weiteren Abschnitten der Phasenfunktion nimmt die Phase stets von $-\pi/2$ bis $+\pi/2$ linear zu.
- Für die Teilaufgaben 1) bis 4) gelte T1 = 0 und T2 = T = 4 ms. Dagegen wird in der Teilaufgabe e) der Fall T1 = 1 ms, T2 = 5 ms betrachtet. Als Eingangssignale werden untersucht:
- ein Rechteckimpuls x1(t) mit der Höhe 1 zwischen 0 und T. Das bedeutet, dass für t < 0 und für t > T jeweils x1(t) = 0 gilt. An den beiden Sprungstellen tritt jeweils der Wert 0.5 auf.
- ein Rechteckimpuls x2(t) mit der Höhe 1 im Bereich von 0 bis 2T,
- ein periodisches Rechtecksignal x3(t) mit der Periodendauer T0 = T:
- $$x_3(t) = \left\{ \begin{array}{c} 1 \\ 0 \\ \end{array} \right.\quad \quad \begin{array}{c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} { 0 < t < T/2,} \\ { T/2 < t < T,} \\ \end{array}$$
- ein periodisches Rechtecksignal x4(t) mit der Periodendauer T0 = 2T:
- $$x_4(t) = \left\{ \begin{array}{c} 1 \\ 0 \\ \end{array} \right.\quad \quad \begin{array}{c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} { 0 < t < T,} \\ { T < t < 2T.} \\ \end{array}$$
- Im Fragenkatalog bezeichnet yi(t) das Signal am Ausgang des Zweiwegekanals, wenn am Eingang das Signal xi(t) anliegt (i = 1, 2, 3, 4).
Hinweise:
- Die Aufgabe gehört zum Kapitel Lineare Verzerrungen.
- Die Thematik „Amplitudenmodulation/Synchrondemodulator” wird im Buch Modulationsverfahren noch ausführlich diskutiert.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
- Gegeben sind die folgenden trigonometrischen Zusammenhänge:
- $$\cos^2(\alpha) = {1}/{2} \cdot \left [ 1 + \cos(2\alpha) \right ] \hspace{0.05cm}, $$
- $$\cos(\alpha) \cdot \cos(\beta) = {1}/{2} \cdot \left[ \cos(\alpha - \beta)+ \cos(\alpha + \beta) \right],$$
- $$ \sin(\alpha) \cdot \cos(\beta) = {1}/{2} \cdot \left[ \sin(\alpha - \beta)+ \sin(\alpha + \beta) \right] \hspace{0.05cm}.$$
- Hinweis: Die Aufgabe bezieht sich auf den Theorieteil von Kapitel 2.3.
Fragebogen
Musterlösung
- 1. Die Lösung im Zeitbereich führt schneller zum Endergebnis:
- $$y_1(t) = x_1(t) \star h(t) = \\ = x_1(t) \star \delta (t) + x_1(t) \star \delta (t - T) = x_1(t) + x_1(t-T).$$
- Somit ist y1(t) ein Rechteckimpuls der Höhe 1 und der Breite 2T.
- Zum gleichen Ergebnis – aber zeitaufwändiger – kommt man durch die Berechnung im Spektralbereich:
- $$Y_1(f) = X_1(f) \cdot H(f) = T \cdot \frac {\sin(\pi f T)}{\pi f T}\cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm} \pi f T} \cdot \left[ 1 + {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f T} \right].$$
- Die komplexen Exponentialfunktionen können mit dem Satz von Euler wie folgt umgewandelt werden:
- $${\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm} \pi f T} \left[ 1 + {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f T} \right] = {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f T} \cdot \left[ {\rm e}^{{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm} \pi f T} + {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm} \pi f T} \right] = \\ = {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f T} \cdot 2 \cos(\pi f T) .$$
- Somit kann für das Ausgangsspektrum geschrieben werden:
- $$Y_1(f) = Y_{11}(f) \cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f T} ,$$
- $$Y_{11}(f) = 2T \cdot \frac {\sin(\pi f T) \cdot \cos(\pi f T)}{\pi f T} = 2T \cdot \frac {\sin(2\pi f T) }{2\pi f T}.$$
- Hierbei ist die Beziehung sin(α) · cos(α) = sin(2α)/2 verwendet. Die Fourierrücktransformation von Y11(f) führt zu einem um t = 0 symmetrischen Rechteck der Breite 2T. Durch die Phasenfunktion wird dieser in den Bereich 0 ... 2T verschoben und das Ergebnis der Zeitbereichsberechnung bestätigt.
- Trotz der Tatsache, dass y1(t) ebenso wie x1(t) rechteckförmig ist, liegen hier Verzerrungen vor. Wegen Ty > Tx sind diese linear. Im interessierenden Frequenzbereich – das sind bei einem si–förmigem Spektrum alle Frequenzen – ist |H(f)| nicht konstant. Also gibt es Dämpfungsverzerrungen.
- Da zudem die Phase nicht im gesamten Bereich linear mit f ansteigt, gibt es auch Phasenverzerrungen. Das bedeutet: Alle Lösungsvorschläge treffen zu mit Ausnahme von 2.
- 2. Aufgrund der bereits in 1) angegebenen Gleichung
- $$y_2(t) = x_2(t) + x_2(t-T)$$
- erhält man einen stufenförmigen Verlauf entsprechend obiger Grafik. Die gesuchten Werte sind:
- $$y_2(t = 0.5 T) \hspace{0.15cm}\underline{= 1}, \hspace{0.3cm} y_2(t = 1.5 T) \hspace{0.15cm}\underline{= 2}, \hspace{0.3cm}y_2(t = 2.5 T) \hspace{0.15cm}\underline{ = 1}.$$
- 3. Die Periodendauer T0 = T des periodischen Signals x3(t) ist genau so groß wie die Verzögerung auf dem zweiten Pfad. Deshalb ist y3(t) = 2 · x3(t) und es sind keine Verzerrungen feststellbar.
- Die Spektralbereichsberechnung führt zum gleichen Ergebnis. X3(f) ist ein Linienspektrum mit Anteilen bei den Frequenzen f = 0, f = ±f0 = ±1/T, f = ±3f0 usw.. Bei diesen diskreten Frequenzen gilt aber exakt:
- $$|H(f)| = 2, \hspace{0.3cm} b(f) = 0 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}\tau_{\rm P}(f) = 0.$$
- Auch daraus folgt wieder y3(t) = 2 · x3(t). Richtig ist somit nur der Lösungsvorschlag 1.
- 4. Aus der unteren Skizze obiger Grafik geht hervor, dass y4(t) = 1 gegenüber x4(t) verzerrt ist. Dabei handelt es sich um Dämpfungsverzerrungen ⇒ Lösungsvorschlag 2, wie die folgende Überlegung zeigt. Wegen T0 = 2T weist das Signal x4(t) die Grundfrequenz f0 = 1/(2T) auf. Bei allen ungeraden Vielfachen von f0 hat somit der Frequenzgang Nullstellen. Die einzige verbleibende Spektrallinie von Y4(f) liegt bei f = 0, wobei gilt:
- $$Y_4(f) = 2 \cdot 0.5 \cdot \delta (f) = 1 \cdot \delta (f) \hspace{0.5cm}\Rightarrow \hspace{0.5cm} y_4(t) = 1.$$
- 5. Der Frequenzgang lautet nun mit T1 = 1 ms, T2 = 5 ms und T = T2 – T1 = 4 ms:
- $$H(f) = {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f T_1}+ {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f T_2}= \left[ 1 + {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f T} \right]\cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f T_1}.$$
- Der Klammerausdruck beschreibt den bereits bisher betrachteten Frequenzgang. Der zweite Term bewirkt eine zusätzliche Laufzeit um T1, und es gilt für alle Signale (i = 1, 2, 3, 4):
- $$y_i^{\rm (e)}(t) = y_i(t-T_1).$$
- Alle Aussagen hinsichtlich der Verzögerungen sind weiter gültig. Dies entspricht dem Lösungsvorschlag 1.