Aufgaben:Aufgabe 4.4: Herkömmliche Entropie und differenzielle Entropie: Unterschied zwischen den Versionen
K (Guenter verschob die Seite 4.4 Zusammenhang zwischen differenzieller und herkömmlicher Entropie nach 4.4 Herkömmliche Entropie und differenzielle Entropie) |
|||
Zeile 3: | Zeile 3: | ||
}} | }} | ||
− | [[Datei:P_ID2878__Inf_A_4_4.png|right|]] | + | [[Datei:P_ID2878__Inf_A_4_4.png|right|frame|WDF gleichverteilter Zufallsgrößen]] |
− | Wir betrachten die zwei wertkontinuierlichen Zufallsgrößen | + | Wir betrachten die zwei wertkontinuierlichen Zufallsgrößen $X$ und $Y$ mit den Wahrscheinlichkeitsdichtefunktionen $f_X(x)$ und $f_Y(y)$. Für diese Zufallsgrößen kann man |
− | + | * die herkömmlichen Entropien $H(X)$ bzw. $H(Y)$ nicht angeben, | |
− | + | * jedoch aber die differentiellen Entropien $h(X)$ und $h(Y)$. | |
+ | |||
+ | |||
Wir betrachten außerdem zwei wertdiskrete Zufallsgrößen: | Wir betrachten außerdem zwei wertdiskrete Zufallsgrößen: | ||
− | + | *Die Zufallsgröße $Z_{X,\hspace{0.05cm}M}$ ergibt sich durch (geeignete) Quantisierung der Zufallsgröße $X$ mit der Quantisierungsstufenzahl $N$ ⇒ Quantisierungsintervallbreite ${\it Delta} = 0.5/M$. | |
− | + | * Die Zufallsgröße $Z_{Y,\hspace{0.05cm}M}$ ergibt sich nach Quantisierung der wertkontinuierlichen Zufallsgröße $Y$ mit der Quantisierungsstufenzahl $M$ ⇒ Quantisierungsintervallbreite ${\it Delta} = 2/M$. | |
+ | |||
+ | |||
+ | Die Wahrscheinlichkeitsdichtefunktionen dieser diskreten Zufallsgrößen setzen sich jeweils aus $M$ Diracfunktionen zusammen, deren Impulsgewichte durch die Intervallflächen der zugehörigen wertkontinuierlichen Zufallsgrößen gegeben sind. Daraus lassen sich die Entropien $H(Z_{X,\hspace{0.05cm}M})$ und $H(Z_{Y,\hspace{0.05cm}M})$ in herkömmlicher Weise entsprechend dem Kapitel [[Informationstheorie/Einige_Vorbemerkungen_zu_zweidimensionalen_Zufallsgrößen#Wahrscheinlichkeitsfunktion_und_Entropie|Wahrscheinlichkeitsfunktion und Entropie]] bestimmen. | ||
− | + | Im Abschnitt [[Informationstheorie/Differentielle_Entropie#Entropie_wertkontinuierlicher_Zufallsgr.C3.B6.C3.9Fen_nach_Quantisierung|Entropiewertkontinuierlicher Zufallsgrößen nach Quantisierung]] wurde auch eine Näherung angegeben. Beispielsweise gilt: | |
+ | :$$H(Z_{X, \hspace{0.05cm}M}) \approx -{\rm log}_2 \hspace{0.1cm} ({\it \Delta}) + h(X)\hspace{0.05cm}. $$ | ||
− | + | *Sie werden im Laufe der Aufgabe feststellen, dass bei rechteckförmiger WDF ⇒ Gleichverteilung diese „Näherung” genau das gleiche Ergebnis liefert wie die direkte Berechnung. | |
− | + | *Aber im allgemeinen Fall – zum Beispiel bei [http://www.lntwww.de/Informationstheorie/Differentielle_Entropie#Entropie_wertkontinuierlicher_Zufallsgr.C3.B6.C3.9Fen_nach_Quantisierung '''dreieckförmiger WDF'''] – stellt obige Gleichung tatsächlich nur eine Näherung dar, die erst im Grenzfall <i>Δ</i> → 0 mit der tatsächlichen Entropie <i>H</i>(<i>Z<sub>X,M</sub></i>) übereinstimmt. | |
− | Sie werden im Laufe der Aufgabe feststellen, dass bei rechteckförmiger WDF ⇒ Gleichverteilung diese „Näherung” genau das gleiche Ergebnis liefert wie die direkte Berechnung. | ||
− | Aber im allgemeinen Fall – zum Beispiel bei [http://www.lntwww.de/Informationstheorie/Differentielle_Entropie#Entropie_wertkontinuierlicher_Zufallsgr.C3.B6.C3.9Fen_nach_Quantisierung '''dreieckförmiger WDF'''] – stellt obige Gleichung tatsächlich nur eine Näherung dar, die erst im Grenzfall <i>Δ</i> → 0 mit der tatsächlichen Entropie <i>H</i>(<i>Z<sub>X,M</sub></i>) übereinstimmt. | ||
<b>Hinweis:</b> Die Aufgabe gehört zum Themengebiet von [http://www.lntwww.de/Informationstheorie/Differentielle_Entropie '''Kapitel 4.1'''] | <b>Hinweis:</b> Die Aufgabe gehört zum Themengebiet von [http://www.lntwww.de/Informationstheorie/Differentielle_Entropie '''Kapitel 4.1'''] |
Version vom 9. Juni 2017, 14:52 Uhr
Wir betrachten die zwei wertkontinuierlichen Zufallsgrößen $X$ und $Y$ mit den Wahrscheinlichkeitsdichtefunktionen $f_X(x)$ und $f_Y(y)$. Für diese Zufallsgrößen kann man
- die herkömmlichen Entropien $H(X)$ bzw. $H(Y)$ nicht angeben,
- jedoch aber die differentiellen Entropien $h(X)$ und $h(Y)$.
Wir betrachten außerdem zwei wertdiskrete Zufallsgrößen:
- Die Zufallsgröße $Z_{X,\hspace{0.05cm}M}$ ergibt sich durch (geeignete) Quantisierung der Zufallsgröße $X$ mit der Quantisierungsstufenzahl $N$ ⇒ Quantisierungsintervallbreite ${\it Delta} = 0.5/M$.
- Die Zufallsgröße $Z_{Y,\hspace{0.05cm}M}$ ergibt sich nach Quantisierung der wertkontinuierlichen Zufallsgröße $Y$ mit der Quantisierungsstufenzahl $M$ ⇒ Quantisierungsintervallbreite ${\it Delta} = 2/M$.
Die Wahrscheinlichkeitsdichtefunktionen dieser diskreten Zufallsgrößen setzen sich jeweils aus $M$ Diracfunktionen zusammen, deren Impulsgewichte durch die Intervallflächen der zugehörigen wertkontinuierlichen Zufallsgrößen gegeben sind. Daraus lassen sich die Entropien $H(Z_{X,\hspace{0.05cm}M})$ und $H(Z_{Y,\hspace{0.05cm}M})$ in herkömmlicher Weise entsprechend dem Kapitel Wahrscheinlichkeitsfunktion und Entropie bestimmen.
Im Abschnitt Entropiewertkontinuierlicher Zufallsgrößen nach Quantisierung wurde auch eine Näherung angegeben. Beispielsweise gilt:
- $$H(Z_{X, \hspace{0.05cm}M}) \approx -{\rm log}_2 \hspace{0.1cm} ({\it \Delta}) + h(X)\hspace{0.05cm}. $$
- Sie werden im Laufe der Aufgabe feststellen, dass bei rechteckförmiger WDF ⇒ Gleichverteilung diese „Näherung” genau das gleiche Ergebnis liefert wie die direkte Berechnung.
- Aber im allgemeinen Fall – zum Beispiel bei dreieckförmiger WDF – stellt obige Gleichung tatsächlich nur eine Näherung dar, die erst im Grenzfall Δ → 0 mit der tatsächlichen Entropie H(ZX,M) übereinstimmt.
Hinweis: Die Aufgabe gehört zum Themengebiet von Kapitel 4.1
Fragebogen
Musterlösung
b) Mit ymin = –1 und ymax = +1 ergibt sich für die differentielle Entropie der Zufallsgröße Y: $$h(Y) = {\rm log}_2 \hspace{0.1cm} (x_{\rm max} - x_{\rm min}) = {\rm log}_2 \hspace{0.1cm} (2) \hspace{0.15cm}\underline{= + 1\,{\rm bit}}\hspace{0.05cm}. $$
c) Die nachfolgende Grafik verdeutlicht die bestmögliche Quantisierung der Zufallsgröße X mit der Quantisierungsstufenzahl M = 4 ⇒ Zufallsgröße ZX, M = 4:
- Die Intervallbreite ist hier gleich Δ = 0.5/4 = 1/8.
- Die möglichen Werte (jeweils in der Intervallmitte) sind z ∈ {0.0625, 0.1875, 0.3125, 0.4375}.
- Die direkte Berechnung der Entropie ergibt mit der Wahrscheinlichkeitsfunktion PZ(Z) = [1/4, ... , 1/4]:
$$H(Z_{X, M = 4}) = {\rm log}_2 \hspace{0.1cm} (4) \hspace{0.15cm}\underline{= 2\,{\rm bit}} \hspace{0.05cm}.$$
- Mit der Näherung erhält man unter Berücksichtigung des Ergebnisses der Teilaufgabe (a):
$$H(Z_{X, M = 4}) \approx -{\rm log}_2 \hspace{0.1cm} ({\it \Delta}) + h(X) = 3\,{\rm bit} +(- 1\,{\rm bit})\hspace{0.15cm}\underline{= 2\,{\rm bit}}\hspace{0.05cm}. $$ Hinweis: Nur bei der Gleichverteilung liefert die Näherung genau das gleiche Ergebnis.
d) Aus der zweiten Grafik erkennt man die Gemeinsamkeiten / Unterschiede zur Teilaufgabe (c):
- Der Quantisierungsparameter ist nun Δ = 2/4 = 1/2.
- Die möglichen Werte sind nun z ∈ {±0.75, ±0.25}.
- Somit liefert hier die „Näherung” (ebenso wie die direkte Berechnung) das Ergebnis:
$$H(Z_{Y, M = 4}) \approx -{\rm log}_2 \hspace{0.1cm} ({\it \Delta}) + h(Y)$$ $$ =\ \hspace{-0.15cm} 1\,{\rm bit} + 1\,{\rm bit}\hspace{0.15cm}\underline{= 2\,{\rm bit}}\hspace{0.05cm}.$$
e) Im Gegensatz zur Teilaufgabe (d) gilt nun Δ = 1/4. Daraus folgt für die „Näherung”: $$H(Z_{Y, M = 8}) \approx -{\rm log}_2 \hspace{0.1cm} ({\it \Delta}) + h(Y)$$ $$ =\ \hspace{-0.15cm} 2\,{\rm bit} + 1\,{\rm bit}\hspace{0.15cm}\underline{= 3\,{\rm bit}}\hspace{0.05cm}.$$ Wieder gleiches Ergebnis bei direkter Berechnung.
f) Richtig ist nur die Aussage 1:
- Die Entropie H(Z) einer diskreten Zufallsgröße Z = {z1, ... , zM} kann nie negativ werden. Der Grenzfall H(Z) = 0 ergibt sich z.B. für Pr(Z = z1) = 1 und Pr(Z = zμ) = 0 für 2 ≤ μ ≤ M.
- Dagegen kann die differentielle Entropie h(X) einer kontinuierlichen Zufallsgröße X negativ (Teilaufgabe a), positiv (Teilaufgabe b) oder auch h(X) = 0 (z.B. xmin = 0, xmax = 1) sein.