Aufgaben:Aufgabe 4.7: Mehrere parallele Gaußkanäle: Unterschied zwischen den Versionen
Zeile 31: | Zeile 31: | ||
''Hinweise:'' | ''Hinweise:'' | ||
*Die Aufgabe gehört zum Kapitel [[Informationstheorie/AWGN–Kanalkapazität_bei_wertkontinuierlichem_Eingang|AWGN–Kanalkapazität bei wertkontinuierlichem Eingang]]. | *Die Aufgabe gehört zum Kapitel [[Informationstheorie/AWGN–Kanalkapazität_bei_wertkontinuierlichem_Eingang|AWGN–Kanalkapazität bei wertkontinuierlichem Eingang]]. | ||
+ | *Bezug genommen wird insbesondere auf die Seite [[Informationstheorie/AWGN–Kanalkapazität_bei_wertkontinuierlichem_Eingang#Parallele_Gau.C3.9Fsche_Kan.C3.A4le|Parallele Gaußkanäle]]. | ||
*Da die Ergebnisse in „bit” angegeben werden sollen, wird in den Gleichungen „log” ⇒ „log<sub>2</sub>” verwendet. | *Da die Ergebnisse in „bit” angegeben werden sollen, wird in den Gleichungen „log” ⇒ „log<sub>2</sub>” verwendet. | ||
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein. | *Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein. | ||
− | + | ||
===Fragebogen=== | ===Fragebogen=== | ||
Zeile 43: | Zeile 44: | ||
{Welche Parameter <i>K</i> gelten für die folgenden Modulationsverfahren? | {Welche Parameter <i>K</i> gelten für die folgenden Modulationsverfahren? | ||
|type="{}"} | |type="{}"} | ||
− | $ | + | $K \ = \ $ { 1 3% } $\text{(bei ASK)}$ |
− | $ | + | $K \ = \ $ { 1 3% } $\text{(bei BPSK)}$ |
− | $4-QAM | + | $K \ = \ $ { 2 3% } $\text{(bei 4-QAM)}$ |
− | $8-PSK | + | $K \ = \ $ { 2 3% } $\text{(bei 8-PSK)}$ |
− | $16-ASK/PSK | + | $K \ = \ $ { 2 3% } $\text{(16-ASK/PSK)}$ |
− | {Welche Kanalkapazität | + | {Welche Kanalkapazität $C_K$ ergibt sich für $K$ gleich gute Kanäle (jeweils mit der Störleistung $P_N$ und der Sendeleistung $P_X(K)$? |
|type="[]"} | |type="[]"} | ||
− | - | + | - Es gilt $C_K = K/2 \cdot \log_2 [1 + P_X/P_N]$. |
− | + | + | + Es gilt $C_K = K/2 \cdot \log_2 [1 + P_X/(K \cdot P_N)]$. |
− | - | + | - Es gilt $C_K = 1/2 \cdot \log_2 [1 + P_X/P_N]$. |
− | {Welche Kapazitäten ergeben sich für | + | {Welche Kapazitäten ergeben sich für $P_X/P_N = 15$? |
|type="{}"} | |type="{}"} | ||
− | $ | + | $K = 1\text{:} \ \ C_K \ = \ $ { 2 3% } |
− | $K = 2: | + | $K = 2\text{:} \ \ C_K \ = \ $ { 3.087 3% } |
− | $K = 4: | + | $K = 4\text{:} \ \ C_K \ = \ $ { 4.496 3% } |
− | {Gibt es bezüglich der Kanalzahl | + | {Gibt es bezüglich der Kanalzahl $K$ ein (theoretisches) Optimum? |
|type="[]"} | |type="[]"} | ||
− | - Ja: Die größte Kanalkapazität ergibt sich für | + | - Ja: Die größte Kanalkapazität ergibt sich für $K = 2$. |
− | - Ja: Die größte Kanalkapazität ergibt sich für | + | - Ja: Die größte Kanalkapazität ergibt sich für $K = 4$. |
− | + Nein: Je größer | + | + Nein: Je größer $K$, desto größer ist die Kanalkapazität. |
− | + | + Der Grenzwert für $K \to \infty$ (in bit) ist $C_K = P_X/P_N/2/\ln (2)$ in „bit&rdqu;o. | |
Version vom 12. Juni 2017, 14:38 Uhr
Die Kanalkapazität des AWGN–Kanals ⇒ $Y = X + N$ wurde im Theorieteil wie folgt angegeben (mit Zusatz–Einheit „bit”):
- $$C_{\rm AWGN}(P_X) = {1}/{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + {P_X}/{P_N} \right )\hspace{0.05cm}.$$
Die verwendeten Größen haben folgende Bedeutung:
- $P_X$ ist die Sendeleistung ⇒ Varianz der Zufallsgröße $X$,
- $P_N$ ist die Störleistung ⇒ Varianz der Zufallsgröße $N$.
Werden $K$ identische Gaußkanäle parallel genutzt, so gilt für die Gesamtkapazität:
- $$C_K(P_X) = K \cdot C_{\rm AWGN}(P_X/K) \hspace{0.05cm}.$$
Hierbei ist berücksichtigt, dass
- in jedem Kanal die gleiche Störleistung $P_N$ vorliegt,
- somit jeder Kanal die gleiche Sendeleistung erhält,
- die Gesamtleistung genau wie im Fall $K = 1$ gleich $P_X$ ist.
In nebenstehender Grafik sind die Signalraumpunkte für einige digitale Modulationsverfahren angegeben:
- Amplitude Shift Keying (ASK),
- Binary Phase Shift Keying (BPSK),
- Quadratur-Amplitudenmodulation (hier: 4-QAM),
- Phase Shift Keying (hier: 8–PSK für GSM Evolution),
- Kombinierte ASK/PSK-Modulation (hier: 16-ASK/PSK).
Zu Beginn dieser Aufgabe ist zu prüfen, welcher $K$–Parameter für die einzelnen Verfahren gültig ist.
Hinweise:
- Die Aufgabe gehört zum Kapitel AWGN–Kanalkapazität bei wertkontinuierlichem Eingang.
- Bezug genommen wird insbesondere auf die Seite Parallele Gaußkanäle.
- Da die Ergebnisse in „bit” angegeben werden sollen, wird in den Gleichungen „log” ⇒ „log2” verwendet.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
Fragebogen
Musterlösung
- Für ASK und BPSK ist K = 1.
- Für die Konstellationen 3 – 5 gilt K = 2 (orthogonale Modulation mit Cosinus und Sinus).
b) Für jeden der Kanäle (1 ≤ k ≤ K) beträgt die Kanalkapazität Ck = 1/2 · log2 (1 + (PX/k)/PN). Die Gesamtkapazität ist dann um den Faktor K größer ⇒ Lösungsvorschlag 2: $$C_K(P_X) = \sum_{k= 1}^K \hspace{0.1cm}C_k = \frac{K}{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{P_X}{K \cdot P_N} \right )\hspace{0.05cm}.$$ Der Lösungsvorschlag 1 ist zu positiv. Dieser würde bei Begrenzung der Gesamtleistung auf K · PX gelten. Der Vorschlag 3 würde dagegen bedeuten, dass man durch die Nutzung mehrerer unabhängiger Kanäle keine Kapazitätssteigerung erreicht, was offensichtlich nicht zutrifft.
c) Die folgende Tabelle zeigt die Ergebnisse für K = 1, K = 2 und K = 4 und verschiedene Signal–zu–Störleistungsverhältnisse PX/PN.
Für PX/PN = 15 (markierte Spalte) ergibt sich:
- K = 1: CK = 1/2 · log2 (16) = 2.000 bit,
- K = 2: CK = 1 · log2 (8.5) = 3.087 bit,
- K = 4: CK = 2 · log2 (4.75) = 4.496 bit.
d) Schon aus obiger Tabelle ist ersichtlich, dass der erste Lösungsvorschlag falsch sein muss. Richtig sind vielmehr die Lösungsvorschläge 3 und 4, wie die nachfolgende Rechnung zeigt:
- Wir schreiben die Kanalkapazität mit „ln” und der Abkürzung ξ = PX/PN:
$$C_{\rm nat}(\xi, K) = \frac{K}{2} \cdot {\rm ln}\hspace{0.05cm}\left ( 1 + \frac{\xi}{K} \right )\hspace{0.05cm}.$$
- Für große K–Werte, also für kleine Werte von ε = ξ/K gilt dann:
$${\rm ln}\hspace{0.05cm}\left ( 1 + \varepsilon \right )= \varepsilon - \frac{\varepsilon^2}{2} + \frac{\varepsilon^3}{3} - ... \hspace{0.3cm}\Rightarrow \hspace{0.3cm} C_{\rm nat}(\xi, K) = \frac{K}{2} \cdot \left [ \frac{\xi}{K} - \frac{\xi^2}{2K^2} + \frac{\xi^3}{3K^3} - ... \right ]$$ $$\hspace{0.3cm}\Rightarrow \hspace{0.3cm} C_{\rm bit}(\xi, K) = \frac{\xi}{2 \cdot {\rm ln}\hspace{0.1cm}(2)} \cdot \left [ 1 - \frac{\xi}{2K} + \frac{\xi^2}{3K^2} -\frac{\xi^3}{4K^3} + \frac{\xi^4}{5K^4} - ... \right ] \hspace{0.05cm}.$$
- Für K → ∞ ergibt sich der vorgeschlagene Wert:
$$C_{\rm bit}(\xi, K \rightarrow\infty) = \frac{\xi}{2 \cdot {\rm ln}\hspace{0.1cm}(2)} = \frac{P_X/P_N}{2 \cdot {\rm ln}\hspace{0.1cm}(2)} \hspace{0.05cm}.$$
- Für kleinere Werte von K ergibt sich stets ein kleinerer C–Wert, da
$$\frac{\xi}{2K} > \frac{\xi^2}{3K^2}\hspace{0.05cm}, \hspace{0.5cm} \frac{\xi^3}{4K^3} > \frac{\xi^4}{5K^4} \hspace{0.05cm}, \hspace{0.5cm} {\rm usw.}$$ Die letzte Zeile der Tabelle zur Teilaufgabe (c) zeigt, dass man für große ξ–Werte mit K = 4 noch weit vom theoretischen Maximum (für K → ∞) entfernt ist.