Aufgaben:Aufgabe 4.Zehn: QPSK–Kanalkapazität: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 21: Zeile 21:
  
 
sollen in der Teilaufgabe (3) in Bezug gesetzt werden zu zwei Shannon–Grenzkurven, die jeweils für eine Gaußsche Eingangsverteilung gültig sind:
 
sollen in der Teilaufgabe (3) in Bezug gesetzt werden zu zwei Shannon–Grenzkurven, die jeweils für eine Gaußsche Eingangsverteilung gültig sind:
:$$C_1( E_{\rm B}/{N_0}) = {1}/{2} \cdot  {\rm log}_2 \hspace{0.1cm} ( 1 + \frac { 2\hspace{0.05cm}R\hspace{0.05cm} E_{\rm B}}{N_0}) ,$$
+
:$$C_1( E_{\rm B}/{N_0}) = {1}/{2} \cdot  {\rm log}_2 \hspace{0.1cm} ( 1 + \frac { 2\cdot R \cdot E_{\rm B}}{N_0}) ,$$
:$$C_2( E_{\rm B}/{N_0}) =  {\rm log}_2 \hspace{0.1cm} ( 1 + \frac { R\hspace{0.05cm} E_{\rm B}}{N_0}) .$$
+
:$$C_2( E_{\rm B}/{N_0}) =  {\rm log}_2 \hspace{0.1cm} ( 1 + \frac { R \cdot E_{\rm B}}{N_0}) .$$
  
 
Die beiden Kurven geben gleichzeitig die maximale Coderate <i>R</i> an, mit der durch lange Kanalcodes eine fehlerfreie Übertragung entsprechend dem [[Informationstheorie/Anwendung_auf_die_Digitalsignalübertragung#Definition_und_Bedeutung_der_Kanalkapazit.C3.A4t|Kanalcodierungstheorem]] möglich ist. Natürlich gelten für <i>C</i><sub>1</sub>(<i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>) bzw. <i>C</i><sub>2</sub>(<i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>) unterschiedliche Randbedingungen. Welche, sollen Sie herausfinden.
 
Die beiden Kurven geben gleichzeitig die maximale Coderate <i>R</i> an, mit der durch lange Kanalcodes eine fehlerfreie Übertragung entsprechend dem [[Informationstheorie/Anwendung_auf_die_Digitalsignalübertragung#Definition_und_Bedeutung_der_Kanalkapazit.C3.A4t|Kanalcodierungstheorem]] möglich ist. Natürlich gelten für <i>C</i><sub>1</sub>(<i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>) bzw. <i>C</i><sub>2</sub>(<i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>) unterschiedliche Randbedingungen. Welche, sollen Sie herausfinden.
Zeile 34: Zeile 34:
 
*Die Aufgabe gehört zum  Kapitel [[Informationstheorie/AWGN–Kanalkapazität_bei_wertkontinuierlichem_Eingang|AWGN–Kanalkapazität bei wertkontinuierlichem Eingang]].
 
*Die Aufgabe gehört zum  Kapitel [[Informationstheorie/AWGN–Kanalkapazität_bei_wertkontinuierlichem_Eingang|AWGN–Kanalkapazität bei wertkontinuierlichem Eingang]].
 
*Bezug genommen wird insbesondere auf die Seite [[Informationstheorie/AWGN–Kanalkapazität_bei_wertdiskretem_Eingang#Maximale_Coderate_f.C3.BCr_QAM.E2.80.93Strukturen|Maximale Coderate für QAM-Strukturen]].  
 
*Bezug genommen wird insbesondere auf die Seite [[Informationstheorie/AWGN–Kanalkapazität_bei_wertdiskretem_Eingang#Maximale_Coderate_f.C3.BCr_QAM.E2.80.93Strukturen|Maximale Coderate für QAM-Strukturen]].  
*Sollte die Eingabe des Zahlenwertes &bdquo;0&rdquo; erforderlich sein, so geben Sie bitte &bdquo;0.&rdquo; ein.
 
  
  
Zeile 72: Zeile 71:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
[[Datei:P_ID2958__Inf_A_4_10a.png|right|]]
+
[[Datei:P_ID2958__Inf_A_4_10a.png|right|frame|QPSK– und 4–QAM–Signalraumkonstellation]]
 
'''(1)'''&nbsp; Die Grafik zeigt die Signalraumkonstellationen für
 
'''(1)'''&nbsp; Die Grafik zeigt die Signalraumkonstellationen für
:* QPSK (<i>Quaternary Phase Shift Keying</i>), und
+
* <i>Quaternary Phase Shift Keying</i> (QPSK), und
:* 4&ndash;QAM (vierstufige Quadraturamplitudenmodulation).
+
* vierstufige Quadraturamplitudenmodulation (4&ndash;QAM).
  
Letztere wird auch als [[Informationstheorie/Anwendung_auf_die_Digitalsignalübertragung#Definition_und_Bedeutung_der_Kanalkapazit.C3.A4t|'''&pi;/4&ndash;QPSK''']] bezeichnet. Beide sind aus informationstechnischer Sicht identisch &#8658; <u>Antwort NEIN</u>.
 
  
'''(2)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 1</u>: Die 4&ndash;QAM kann man als zwei BPSK&ndash;Konstellationen in orthogonalen Ebenen betrachten, wobei die Energie pro Informationsbit (<i>E</i><sub>B</sub>) in beiden Fällen gleich ist. Da entsprechend Teilaufgabe (a) die 4&ndash;QAM mit der QSPK identisch ist, gilt tatsächlich <i>C</i><sub>QPSK</sub>(<i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>)&nbsp;=&nbsp;2&nbsp;&middot;&nbsp;<i>C</i><sub>BPSK</sub>(<i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>).
+
Letztere wird auch als [[Informationstheorie/Anwendung_auf_die_Digitalsignalübertragung#Definition_und_Bedeutung_der_Kanalkapazit.C3.A4t|&pi;/4&ndash;QPSK]] bezeichnet. Beide sind aus informationstheoretischer Sicht identisch &#8658; <u>Antwort NEIN</u>.
<br><br><br><br>
 
'''(3)'''&nbsp; In der nebenstehenden Grafik sind die beiden angegebenen Shannon&ndash;Grenzkurven zusammen mit <i>C</i><sub>BPSK</sub>(<i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>) und <i>C</i><sub>QPSK</sub>(<i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>) skizziert:
 
[[Datei:P_ID2959__Inf_A_4_1c.png|right|]]
 
$$C_1( E_{\rm B}/{N_0}) = \frac{1}{2} \cdot  {\rm log}_2 \hspace{0.1cm} ( 1 + \frac { 2\hspace{0.05cm}R\hspace{0.05cm} E_{\rm B}}{N_0}) ,$$
 
$$C_2( E_{\rm B}/{N_0}) =  {\rm log}_2 \hspace{0.1cm} ( 1 + \frac { R\hspace{0.05cm} E_{\rm B}}{N_0}) .$$
 
Die grün&ndash;gestrichelte Kurve <i>C</i><sub>1</sub>(<i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>) gilt für den AWGN&ndash;Kanal mit gaußverteiltem Eingang. Für die Coderate <i>R</i>&nbsp;=&nbsp;1 sind nach dieser Kurve 10 &middot; lg(<i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>) = 1.76 dB erforderlich. Für <i>R</i> = 2 benötigt man 10&nbsp;&middot;&nbsp;lg(<i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>)&nbsp;=&nbsp;5.74&nbsp;dB.
 
  
Die blau&ndash;gestrichelte Kurve <i>C</i><sub>2</sub>(<i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>) gibt die Shannon&ndash;Grenze für <i>K</i>&nbsp;=&nbsp;2 parallele Gaußkanäle an.<br> Hier benötigt man 10 &middot; lg(<i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>) = 0 dB für <i>R</i> = 1 bzw. 10 &middot; lg(<i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>) = 1.76 dB für <i>R</i> = 2.
 
  
Man erkennt aus der obigen Skizze:
+
'''(2)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 1</u>:
:* Die eindimensionale BPSK liegt im gesamten Bereich unterhalb von <i>C</i><sub>1</sub> und damit natürlich auch unterhalb von <i>C</i><sub>2</sub> > <i>C</i><sub>1</sub>.
+
*Die 4&ndash;QAM kann man als zwei BPSK&ndash;Konstellationen in orthogonalen Ebenen betrachten, wobei die Energie pro Informationsbit (<i>E</i><sub>B</sub>) in beiden Fällen gleich ist.
:* Die zweidimensionale QPSK liegt erwartungsgemäß unter der für sie relevanten Grenzkurve <i>C</i><sub>2</sub>. Sie liegt aber im unteren Bereich (bis nahezu 6 dB) oberhalb von <i>C</i><sub>1</sub>.
+
*Da entsprechend der Teilaufgabe (1) die 4&ndash;QAM mit der QSPK identisch ist, gilt tatsächlich:
 +
:$$C_{\rm QPSK}( E_{\rm B}/{N_0}) = 2 \cdot C_{\rm BPSK}( E_{\rm B}/{N_0}).$$
  
Richtig sind also die <u>Lösungsvorschläge 1, 2 und 4</u>.
+
'''(3)'''&nbsp; In der unteren Grafik sind die beiden angegebenen Shannon&ndash;Grenzkurven zusammen mit <i>C</i><sub>BPSK</sub>(<i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>) und <i>C</i><sub>QPSK</sub>(<i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>) skizziert:
 +
[[Datei:P_ID2959__Inf_A_4_1c.png|right|frame|Vier Kapazitätskurven mit unterschiedlichen Aussagen]]
 +
:$$C_1( E_{\rm B}/{N_0}) = {1}/{2} \cdot  {\rm log}_2 \hspace{0.1cm} ( 1 + \frac { 2 \cdot R \cdot E_{\rm B}}{N_0}) ,$$
 +
:$$C_2( E_{\rm B}/{N_0}) =  {\rm log}_2 \hspace{0.1cm} ( 1 + \frac { R \cdot E_{\rm B}}{N_0}) .$$
 +
Man erkennt aus dieser  Skizze:
 +
*Die grün&ndash;gestrichelte Kurve <i>C</i><sub>1</sub>(<i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>) gilt für den AWGN&ndash;Kanal mit gaußverteiltem Eingang. Für die Coderate <i>R</i> =1 sind nach dieser Kurve 10 &middot; lg(<i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>) = 1.76 dB erforderlich. Für <i>R</i> = 2 benötigt man dagegen 10&nbsp;&middot;&nbsp;lg(<i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>)&nbsp;=&nbsp;5.74&nbsp;dB.
 +
*Die blau&ndash;gestrichelte Kurve <i>C</i><sub>2</sub>(<i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>) gibt die Shannon&ndash;Grenze für <i>K</i>&nbsp;=&nbsp;2 parallele Gaußkanäle an. Hier benötigt man 10 &middot; lg(<i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>) = 0 dB für <i>R</i> = 1 bzw. 10 &middot; lg(<i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>) = 1.76 dB für <i>R</i> = 2.
 +
* Die eindimensionale BPSK liegt im gesamten Bereich unterhalb von <i>C</i><sub>1</sub> und damit natürlich auch unterhalb von <i>C</i><sub>2</sub> > <i>C</i><sub>1</sub>.
 +
* Die zweidimensionale QPSK liegt erwartungsgemäß unter der für sie relevanten Grenzkurve <i>C</i><sub>2</sub>. Sie liegt aber im unteren Bereich (bis nahezu 6 dB) oberhalb von <i>C</i><sub>1</sub>.
 +
 
 +
&rArr; &nbsp; Richtig sind also die <u>Lösungsvorschläge 1, 2 und 4</u>.
  
  
 
'''(4)'''&nbsp; Die <i>C</i><sub>QPSK</sub>(<i>E</i><sub>S</sub>/<i>N</i><sub>0</sub>)&ndash;Kurve kann ebenfalls aus <i>C</i><sub>BPSK</sub>(<i>E</i><sub>S</sub>/<i>N</i><sub>0</sub>) konstruiert werden und zwar
 
'''(4)'''&nbsp; Die <i>C</i><sub>QPSK</sub>(<i>E</i><sub>S</sub>/<i>N</i><sub>0</sub>)&ndash;Kurve kann ebenfalls aus <i>C</i><sub>BPSK</sub>(<i>E</i><sub>S</sub>/<i>N</i><sub>0</sub>) konstruiert werden und zwar
:* durch Verdopplung
+
* zum einen durch Verdopplung:
$$C_{\rm BPSK}(10 \cdot {\rm lg} \hspace{0.1cm}E_{\rm S}/{N_0})  
+
:$$C_{\rm BPSK}(10 \cdot {\rm lg} \hspace{0.1cm}E_{\rm S}/{N_0})  
\hspace{0.5cm}\Rightarrow \hspace{0.5cm}
+
\hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
2 \cdot C_{\rm BPSK}(10 \cdot {\rm lg} \hspace{0.1cm}E_{\rm S}/{N_0}) ,$$   
 
2 \cdot C_{\rm BPSK}(10 \cdot {\rm lg} \hspace{0.1cm}E_{\rm S}/{N_0}) ,$$   
:* sowie durch eine Verschiebung um 3 dB nach rechts:
+
* sowie durch eine Verschiebung um 3 dB nach rechts:
$$C_{\rm QPSK}(10 \cdot {\rm lg} \hspace{0.1cm}E_{\rm S}/{N_0})  
+
:$$C_{\rm QPSK}(10 \cdot {\rm lg} \hspace{0.1cm}E_{\rm S}/{N_0})  
 
=
 
=
 
2 \cdot C_{\rm BPSK}(10 \cdot {\rm lg} \hspace{0.1cm}E_{\rm S}/{N_0} - 3\,{\rm dB}) .$$
 
2 \cdot C_{\rm BPSK}(10 \cdot {\rm lg} \hspace{0.1cm}E_{\rm S}/{N_0} - 3\,{\rm dB}) .$$

Version vom 14. Juni 2017, 16:21 Uhr

Kapazitätskurven für BPSK und QPSK

Gegeben sind die AWGN–Kanalkapazitätsgrenzkurven für die beiden Modulationsverfahren


Die Kanalkapazitäten CBPSK und CQPSK geben gleichzeitig die maximale Coderate R an, mit der bei BPSK (bzw. QPSK) mit geeigneter Kanalcodierung die Bitfehlerwahrscheinlichkeit „pB ≡ 0” asymptotisch erreichbar ist.

Das obere Diagramm zeigt die Abhängigkeit von der Kenngröße 10 · lg (EB/N0) in dB, wobei EB die „Energie pro Informationsbit” angibt:

  • Für große EB/N0–Werte liefert die BPSK–Kurve die maximale Coderate R ≈ 1. *Aus der QPSK–Kurve kann dagegen R ≈ 2 abgelesen werden


Die Kapazitätskurven für digitalen Eingang (jeweils mit der Einheit „bit/Symbol”),

  • grüne Kurve CBPSK(EB/N0) und
  • blaue Kurve CQPSK(EB/N0)


sollen in der Teilaufgabe (3) in Bezug gesetzt werden zu zwei Shannon–Grenzkurven, die jeweils für eine Gaußsche Eingangsverteilung gültig sind:

$$C_1( E_{\rm B}/{N_0}) = {1}/{2} \cdot {\rm log}_2 \hspace{0.1cm} ( 1 + \frac { 2\cdot R \cdot E_{\rm B}}{N_0}) ,$$
$$C_2( E_{\rm B}/{N_0}) = {\rm log}_2 \hspace{0.1cm} ( 1 + \frac { R \cdot E_{\rm B}}{N_0}) .$$

Die beiden Kurven geben gleichzeitig die maximale Coderate R an, mit der durch lange Kanalcodes eine fehlerfreie Übertragung entsprechend dem Kanalcodierungstheorem möglich ist. Natürlich gelten für C1(EB/N0) bzw. C2(EB/N0) unterschiedliche Randbedingungen. Welche, sollen Sie herausfinden.

Die Abszisse im unteren Diagramm ist dagegen 10 · lg (ES/N0) mit der „Energie pro Symbol” (ES). Zu erkennen ist, dass die beiden Endwerte gegenüber der oberen Darstellung nicht verändert werden:

$$C_{\rm BPSK}( E_{\rm S}/{N_0} \to \infty) = C_{\rm BPSK}( E_{\rm B}/{N_0} \to \infty) = 1 \ \rm bit/Symbol,$$
$$C_{\rm QPSK}( E_{\rm S}/{N_0} \to \infty) = C_{\rm QPSK}( E_{\rm B}/{N_0} \to \infty) = 2 \ \rm bit/Symbol.$$


Hinweise:


Fragebogen

1

Unterscheiden sich QPSK und 4–QAM aus informationstheoretischer Sicht?

Ja.
Nein.

2

Wie lässt sich CQPSK(EB/N0) aus CBPSK(EB/N0) konstruieren?

Durch Verdopplung:   CQPSK(EB/N0) = 2 · CBPSK(EB/N0).
Zusätzlich durch eine Verschiebung nach rechts.
Zusätzlich durch eine Verschiebung nach links.
CQPSK(EB/N0) kann man aus CBPSK(EB/N0) nicht konstruieren.

3

Welcher Zusammenhang besteht zu den Shannon–Grenzkurven?

Es gilt CBPSK(EB/N0) ≤ C1(EB/N0).
Es gilt CBPSK(EB/N0) ≤ C2(EB/N0).
Es gilt CQPSK(EB/N0) ≤ C1(EB/N0).
Es gilt CQPSK(EB/N0) ≤ C2(EB/N0).

4

Wie lässt sich CQPSK(ES/N0) aus CBPSK(ES/N0) konstruieren?

Durch Verdopplung: CQPSK (ES/N0) = 2 · CBPSK(ES/N0).
Zusätzlich durch eine Verschiebung nach rechts.
Zusätzlich durch eine Verschiebung nach links.
CQPSK(ES/N0) kann man aus CBPSK(ES/N0) nicht konstruieren.


Musterlösung

QPSK– und 4–QAM–Signalraumkonstellation

(1)  Die Grafik zeigt die Signalraumkonstellationen für

  • Quaternary Phase Shift Keying (QPSK), und
  • vierstufige Quadraturamplitudenmodulation (4–QAM).


Letztere wird auch als π/4–QPSK bezeichnet. Beide sind aus informationstheoretischer Sicht identisch ⇒ Antwort NEIN.


(2)  Richtig ist der Lösungsvorschlag 1:

  • Die 4–QAM kann man als zwei BPSK–Konstellationen in orthogonalen Ebenen betrachten, wobei die Energie pro Informationsbit (EB) in beiden Fällen gleich ist.
  • Da entsprechend der Teilaufgabe (1) die 4–QAM mit der QSPK identisch ist, gilt tatsächlich:
$$C_{\rm QPSK}( E_{\rm B}/{N_0}) = 2 \cdot C_{\rm BPSK}( E_{\rm B}/{N_0}).$$

(3)  In der unteren Grafik sind die beiden angegebenen Shannon–Grenzkurven zusammen mit CBPSK(EB/N0) und CQPSK(EB/N0) skizziert:

Vier Kapazitätskurven mit unterschiedlichen Aussagen
$$C_1( E_{\rm B}/{N_0}) = {1}/{2} \cdot {\rm log}_2 \hspace{0.1cm} ( 1 + \frac { 2 \cdot R \cdot E_{\rm B}}{N_0}) ,$$
$$C_2( E_{\rm B}/{N_0}) = {\rm log}_2 \hspace{0.1cm} ( 1 + \frac { R \cdot E_{\rm B}}{N_0}) .$$

Man erkennt aus dieser Skizze:

  • Die grün–gestrichelte Kurve C1(EB/N0) gilt für den AWGN–Kanal mit gaußverteiltem Eingang. Für die Coderate R =1 sind nach dieser Kurve 10 · lg(EB/N0) = 1.76 dB erforderlich. Für R = 2 benötigt man dagegen 10 · lg(EB/N0) = 5.74 dB.
  • Die blau–gestrichelte Kurve C2(EB/N0) gibt die Shannon–Grenze für K = 2 parallele Gaußkanäle an. Hier benötigt man 10 · lg(EB/N0) = 0 dB für R = 1 bzw. 10 · lg(EB/N0) = 1.76 dB für R = 2.
  • Die eindimensionale BPSK liegt im gesamten Bereich unterhalb von C1 und damit natürlich auch unterhalb von C2 > C1.
  • Die zweidimensionale QPSK liegt erwartungsgemäß unter der für sie relevanten Grenzkurve C2. Sie liegt aber im unteren Bereich (bis nahezu 6 dB) oberhalb von C1.

⇒   Richtig sind also die Lösungsvorschläge 1, 2 und 4.


(4)  Die CQPSK(ES/N0)–Kurve kann ebenfalls aus CBPSK(ES/N0) konstruiert werden und zwar

  • zum einen durch Verdopplung:
$$C_{\rm BPSK}(10 \cdot {\rm lg} \hspace{0.1cm}E_{\rm S}/{N_0}) \hspace{0.3cm}\Rightarrow \hspace{0.3cm} 2 \cdot C_{\rm BPSK}(10 \cdot {\rm lg} \hspace{0.1cm}E_{\rm S}/{N_0}) ,$$
  • sowie durch eine Verschiebung um 3 dB nach rechts:
$$C_{\rm QPSK}(10 \cdot {\rm lg} \hspace{0.1cm}E_{\rm S}/{N_0}) = 2 \cdot C_{\rm BPSK}(10 \cdot {\rm lg} \hspace{0.1cm}E_{\rm S}/{N_0} - 3\,{\rm dB}) .$$

Richtig sind die beiden ersten Lösungsvorschläge, wobei der zweite Vorschlag berücksichtigt, dass bei QPSK die Energie in einer Dimension nur ES/2 beträgt.