Aufgaben:Aufgabe 4.4: Herkömmliche Entropie und differenzielle Entropie: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
Zeile 96: Zeile 96:
 
:$$H(Z_{X,\hspace{0.05cm} M = 4}) \approx  -{\rm log}_2 \hspace{0.1cm} ({\it \Delta}) + h(X) =  
 
:$$H(Z_{X,\hspace{0.05cm} M = 4}) \approx  -{\rm log}_2 \hspace{0.1cm} ({\it \Delta}) + h(X) =  
 
3\,{\rm bit} +(- 1\,{\rm bit})\hspace{0.15cm}\underline{= 2\,{\rm bit}}\hspace{0.05cm}. $$
 
3\,{\rm bit} +(- 1\,{\rm bit})\hspace{0.15cm}\underline{= 2\,{\rm bit}}\hspace{0.05cm}. $$
<i>Hinweis:</i>&nbsp; Nur bei der Gleichverteilung liefert die Näherung genau das gleiche Ergebnis wie die direkte Berechnung, also die tatsächliche Entropie.
+
<u>Hinweis:</u>&nbsp; Nur bei der Gleichverteilung liefert die Näherung genau das gleiche Ergebnis wie die direkte Berechnung, also die tatsächliche Entropie.
  
 
[[Datei:P_ID2880__Inf_A_4_4d.png|right|frame|Quantisierte Zufallsgröße  $Z_{Y, \ M = 4}$]]
 
[[Datei:P_ID2880__Inf_A_4_4d.png|right|frame|Quantisierte Zufallsgröße  $Z_{Y, \ M = 4}$]]
Zeile 109: Zeile 109:
  
 
[[Datei:P_ID2881__Inf_A_4_4e.png|right|frame|Quantisierte Zufallsgröße&nbsp;  $Z_{Y, \ M = 8}$]]
 
[[Datei:P_ID2881__Inf_A_4_4e.png|right|frame|Quantisierte Zufallsgröße&nbsp;  $Z_{Y, \ M = 8}$]]
'''(5)'''&nbsp; Im Gegensatz zur Teilaufgabe&nbsp; '''(5)'''&nbsp; gilt nun &nbsp;${\it \Delta}  = 1/4$.&nbsp; Daraus folgt für die &bdquo;Näherung&rdquo;:
+
'''(5)'''&nbsp; Im Gegensatz zur Teilaufgabe&nbsp; '''(4)'''&nbsp; gilt nun &nbsp;${\it \Delta}  = 1/4$.&nbsp; Daraus folgt für die &bdquo;Näherung&rdquo;:
 
:$$H(Z_{Y,\hspace{0.05cm} M = 8})  \approx    -{\rm log}_2 \hspace{0.1cm} ({\it \Delta}) + h(Y) =  
 
:$$H(Z_{Y,\hspace{0.05cm} M = 8})  \approx    -{\rm log}_2 \hspace{0.1cm} ({\it \Delta}) + h(Y) =  
 
2\,{\rm bit} + 1\,{\rm bit}\hspace{0.15cm}\underline{= 3\,{\rm bit}}\hspace{0.05cm}.$$
 
2\,{\rm bit} + 1\,{\rm bit}\hspace{0.15cm}\underline{= 3\,{\rm bit}}\hspace{0.05cm}.$$
 
Man erhält wieder das gleiche  Ergebnis wie bei der direkten Berechnung.
 
Man erhält wieder das gleiche  Ergebnis wie bei der direkten Berechnung.
<br clear=all>
+
 
 +
 
 
'''(6)'''&nbsp; Richtig ist nur die <u>Aussage 1</u>:
 
'''(6)'''&nbsp; Richtig ist nur die <u>Aussage 1</u>:
 
* Die Entropie&nbsp; $H(Z)$&nbsp; einer diskreten Zufallsgröße&nbsp; $Z = \{z_1, \ \text{...} \ , z_M\}$&nbsp; ist nie negativ.  
 
* Die Entropie&nbsp; $H(Z)$&nbsp; einer diskreten Zufallsgröße&nbsp; $Z = \{z_1, \ \text{...} \ , z_M\}$&nbsp; ist nie negativ.  

Aktuelle Version vom 28. September 2021, 14:16 Uhr

Zweimal Gleichverteilung

Wir betrachten die beiden wertkontinuierlichen Zufallsgrößen  $X$  und  $Y$  mit den Wahrscheinlichkeitsdichtefunktionen $f_X(x)$  und $f_Y(y)$.  Für diese Zufallsgrößen kann man

  • die herkömmlichen Entropien  $H(X)$  bzw.  $H(Y)$  nicht angeben,
  • jedoch aber die differentiellen Entropien  $h(X)$  und  $h(Y)$.


Wir betrachten außerdem zwei wertdiskrete Zufallsgrößen:

  • Die Zufallsgröße  $Z_{X,\hspace{0.05cm}M}$  ergibt sich durch (geeignete) Quantisierung der Zufallsgröße  $X$  mit der Quantisierungsstufenzahl  $M$
    ⇒   Quantisierungsintervallbreite  ${\it \Delta} = 0.5/M$.
  • Die Zufallsgröße  $Z_{Y,\hspace{0.05cm}M}$  ergibt sich nach Quantisierung der Zufallsgröße  $Y$  mit der Quantisierungsstufenzahl  $M$  
    ⇒   Quantisierungsintervallbreite  ${\it \Delta} = 2/M$.


Die Wahrscheinlichkeitsdichtefunktionen dieser diskreten Zufallsgrößen setzen sich jeweils aus  $M$  Diracfunktionen zusammen, deren Impulsgewichte durch die Intervallflächen der zugehörigen wertkontinuierlichen Zufallsgrößen gegeben sind.

Daraus lassen sich die Entropien  $H(Z_{X,\hspace{0.05cm}M})$  und  $H(Z_{Y,\hspace{0.05cm}M})$  in herkömmlicher Weise entsprechend dem Kapitel  Wahrscheinlichkeitsfunktion und Entropie  bestimmen.

Im Abschnitt  Entropie wertkontinuierlicher Zufallsgrößen nach Quantisierung  wurde auch eine Näherung angegeben.  Beispielsweise gilt:

$$H(Z_{X, \hspace{0.05cm}M}) \approx -{\rm log}_2 \hspace{0.1cm} ({\it \Delta}) + h(X)\hspace{0.05cm}. $$
  • Im Laufe der Aufgabe wird sich zeigen, dass bei rechteckförmiger WDF   ⇒   Gleichverteilung diese „Näherung” das gleiche Ergebnis liefert wie die direkte Berechnung.
  • Aber im allgemeinen Fall – so im  $\text{Beispiel 2}$  mit dreieckförmiger WDF – stellt obige Gleichung tatsächlich nur eine Näherung dar, die erst im Grenzfall  ${\it \Delta} \to 0$  mit der tatsächlichen Entropie  $H(Z_{X,\hspace{0.05cm}M})$  übereinstimmt.





Hinweise:


Fragebogen

1

Berechnen Sie die differentielle Entropie  $h(X)$.

$ h(X) \ = \ $

$\ \rm bit$

2

Berechnen Sie die differentielle Entropie $h(Y)$.

$ h(Y) \ = \ $

$\ \rm bit$

3

Berechnen Sie die Entropie der wertdiskreten Zufallsgrößen  $Z_{X,\hspace{0.05cm}M=4}$  nach der direkten Methode.

$H(Z_{X,\hspace{0.05cm}M=4})\ = \ $

$\ \rm bit$

4

Berechnen Sie die Entropie der wertdiskreten Zufallsgrößen  $Z_{X,\hspace{0.05cm}M=4}$  mit der angegebenen Näherung.

$H(Z_{X,\hspace{0.05cm}M=4})\ = \ $

$\ \rm bit$

5

Berechnen Sie die Entropie der wertdiskreten Zufallsgröße  $Z_{Y,\hspace{0.05cm}M=8}$  mit der angegebenen Näherung.

$H(Z_{Y,\hspace{0.05cm}M=8})\ = \ $

$\ \rm bit$

6

Welche der folgenden Aussagen sind zutreffend?

Die Entropie einer wertdiskreten Zufallsgröße  $Z$  ist stets  $H(Z) \ge 0$.
Die differenzielle Entropie einer wertkontinuierlichen Zufallsgröße  $X$  ist stets  $h(X) \ge 0$.


Musterlösung

(1)  Gemäß der entsprechenden Theorieseite gilt mit  $x_{\rm min} = 0$  und  $x_{\rm max} = 1/2$:

$$h(X) = {\rm log}_2 \hspace{0.1cm} (x_{\rm max} - x_{\rm min}) = {\rm log}_2 \hspace{0.1cm} (1/2) \hspace{0.15cm}\underline{= - 1\,{\rm bit}}\hspace{0.05cm}.$$


(2)  Mit  $y_{\rm min} = -1$  und  $y_{\rm max} = +1$  ergibt sich dagegen für die differentielle Entropie der Zufallsgröße  $Y$:

$$h(Y) = {\rm log}_2 \hspace{0.1cm} (y_{\rm max} - y_{\rm min}) = {\rm log}_2 \hspace{0.1cm} (2) \hspace{0.15cm}\underline{= + 1\,{\rm bit}}\hspace{0.05cm}. $$


Quantisierte Zufallsgröße  $Z_{X, \ M = 4}$

(3)  Die nebenstehende Grafik verdeutlicht die bestmögliche Quantisierung der Zufallsgröße  $X$  mit der Quantisierungsstufenzahl  $M = 4$    ⇒   Zufallsgröße  $Z_{X, \ M = 4}$:

  • Die Intervallbreite ist hier gleich  ${\it \Delta} = 0.5/4 = 1/8$.
  • Die möglichen Werte  (jeweils in der Intervallmitte)  sind  $z \in \{0.0625,\ 0.1875,\ 0.3125,\ 0.4375\}$.


Die direkte Entropieberechnung ergibt mit der Wahrscheinlichkeitsfunktion $P_Z(Z) = \big [1/4,\ \text{...} , \ 1/4 \big]$:

$$H(Z_{X, \ M = 4}) = {\rm log}_2 \hspace{0.1cm} (4) \hspace{0.15cm}\underline{= 2\,{\rm bit}} \hspace{0.05cm}.$$

Mit der Näherung erhält man unter Berücksichtigung des Ergebnisses von  (1):

$$H(Z_{X,\hspace{0.05cm} M = 4}) \approx -{\rm log}_2 \hspace{0.1cm} ({\it \Delta}) + h(X) = 3\,{\rm bit} +(- 1\,{\rm bit})\hspace{0.15cm}\underline{= 2\,{\rm bit}}\hspace{0.05cm}. $$

Hinweis:  Nur bei der Gleichverteilung liefert die Näherung genau das gleiche Ergebnis wie die direkte Berechnung, also die tatsächliche Entropie.

Quantisierte Zufallsgröße $Z_{Y, \ M = 4}$


(4)  Aus der zweiten Grafik erkennt man die Gemeinsamkeiten / Unterschiede zur Teilaufgabe  (3):

  • Der Quantisierungsparameter ist nun  ${\it \Delta} = 2/4 = 1/2$.
  • Die möglichen Werte sind nun  $z \in \{\pm 0.75,\ \pm 0.25\}$.
  • Somit liefert hier die „Näherung”  (ebenso wie die direkte Berechnung)  das Ergebnis:
$$H(Z_{Y,\hspace{0.05cm} M = 4}) \approx -{\rm log}_2 \hspace{0.1cm} ({\it \Delta}) + h(Y) = 1\,{\rm bit} + 1\,{\rm bit}\hspace{0.15cm}\underline{= 2\,{\rm bit}}\hspace{0.05cm}.$$


Quantisierte Zufallsgröße  $Z_{Y, \ M = 8}$

(5)  Im Gegensatz zur Teilaufgabe  (4)  gilt nun  ${\it \Delta} = 1/4$.  Daraus folgt für die „Näherung”:

$$H(Z_{Y,\hspace{0.05cm} M = 8}) \approx -{\rm log}_2 \hspace{0.1cm} ({\it \Delta}) + h(Y) = 2\,{\rm bit} + 1\,{\rm bit}\hspace{0.15cm}\underline{= 3\,{\rm bit}}\hspace{0.05cm}.$$

Man erhält wieder das gleiche Ergebnis wie bei der direkten Berechnung.


(6)  Richtig ist nur die Aussage 1:

  • Die Entropie  $H(Z)$  einer diskreten Zufallsgröße  $Z = \{z_1, \ \text{...} \ , z_M\}$  ist nie negativ.
  • Der Grenzfall  $H(Z) = 0$  ergibt sich zum Beispiel für  ${\rm Pr}(Z = z_1) = 1$  und  ${\rm Pr}(Z = z_\mu) = 0$  für  $2 \le \mu \le M$.
  • Dagegen kann die differentielle Entropie  $h(X)$  einer wertkontinuierlichen Zufallsgröße  $X$  wie folgt sein:
    • $h(X) < 0$  $($Teilaufgabe 1$)$,
    • $h(X) > 0$  $($Teilaufgabe 2$)$, oder auch
    • $h(X) = 0$  $($zum Beispiel für  $x_{\rm min} = 0$  und  $x_{\rm max} = 1)$.