Aufgaben:Aufgabe 1.17: Zum Kanalcodierungstheorem: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 9: Zeile 9:
 
Die Grafik zeigt die maximal zulässige Coderate&nbsp; $R < C$&nbsp; gemäß Shannons&nbsp; [[Kanalcodierung/Informationstheoretische_Grenzen_der_Kanalcodierung#Kanalcodierungstheorem_und_Kanalkapazit.C3.A4t|Kanalcodierungstheorem]]:
 
Die Grafik zeigt die maximal zulässige Coderate&nbsp; $R < C$&nbsp; gemäß Shannons&nbsp; [[Kanalcodierung/Informationstheoretische_Grenzen_der_Kanalcodierung#Kanalcodierungstheorem_und_Kanalkapazit.C3.A4t|Kanalcodierungstheorem]]:
  
*Die grüne Grenzkurve gibt die Kanalkapazität&nbsp; $C$&nbsp; für den AWGN–Kanal unter der Voraussetzung eines binären Eingangssignals („BPSK”) an.
+
*Die grüne Grenzkurve gibt die Kanalkapazität&nbsp; $C$&nbsp; für den AWGN–Kanal unter der Voraussetzung eines binären Eingangssignals&nbsp; („BPSK”)&nbsp; an.
  
*In der&nbsp;  [[Aufgaben:1.17Z_BPSK–Kanalkapazität|Aufgabe 1.17Z]]&nbsp; wird hierfür eine einfache Näherung angegeben. Mit der zweiten Abszisse
+
*In der&nbsp;  [[Aufgaben:1.17Z_BPSK–Kanalkapazität|Aufgabe 1.17Z]]&nbsp; wird hierfür eine einfache Näherung angegeben.&nbsp; Mit der zweiten Abszisse
 
   
 
   
 
:$$x = \frac {1.6\,{\rm dB} + 10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 }{1\,{\rm dB}}$$
 
:$$x = \frac {1.6\,{\rm dB} + 10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 }{1\,{\rm dB}}$$
Zeile 19: Zeile 19:
 
:$$C \approx \hspace{0.15cm} \left\{ \begin{array}{c} 1 - {\rm e}^{- 0.4 \hspace{0.05cm} \cdot \hspace{0.05cm} x} \\ \\ 0 \end{array} \right.\quad \begin{array}{*{1}c} {\rm f\ddot{u}r\hspace{0.15cm}} x > 0, \\ \\{\rm f\ddot{u}r\hspace{0.15cm}} x < 0. \end{array}$$
 
:$$C \approx \hspace{0.15cm} \left\{ \begin{array}{c} 1 - {\rm e}^{- 0.4 \hspace{0.05cm} \cdot \hspace{0.05cm} x} \\ \\ 0 \end{array} \right.\quad \begin{array}{*{1}c} {\rm f\ddot{u}r\hspace{0.15cm}} x > 0, \\ \\{\rm f\ddot{u}r\hspace{0.15cm}} x < 0. \end{array}$$
 
   
 
   
*Gilt&nbsp; $R < C$, so kann ein Code gefunden werden, der bei unendlich langen Blöcken&nbsp; $(n → ∞)$&nbsp; zur Fehlerwahrscheinlichkeit &bdquo;Null&rdquo; führt. Wie dieser Code aussieht, ist durch das Kanalcodierungstheorem nicht festgelegt und spielt für diese Aufgabe auch keine Rolle.
+
*Gilt&nbsp; $R < C$,&nbsp; so kann ein Code gefunden werden,&nbsp; der bei unendlich langen Blöcken&nbsp; $(n → ∞)$&nbsp; zur Fehlerwahrscheinlichkeit &bdquo;Null&rdquo; führt.  
 +
 
 +
*Wie dieser Code aussieht,&nbsp; ist durch das Kanalcodierungstheorem nicht festgelegt und spielt für diese Aufgabe auch keine Rolle.
  
  
 
In die Grafik als Punkte eingezeichnet sind die Kenngrößen etablierter Codiersysteme:  
 
In die Grafik als Punkte eingezeichnet sind die Kenngrößen etablierter Codiersysteme:  
*Die Punkte&nbsp; $\rm X$,&nbsp; $\rm Y$&nbsp; und&nbsp; $\rm Z$&nbsp; markieren drei Hamming–Codes unterschiedlicher Codelängen, nämlich mit&nbsp; $n = 7$,&nbsp; $n = 15$&nbsp; und&nbsp; $n = 31$.  
+
*Die Punkte&nbsp; $\rm X$,&nbsp; $\rm Y$&nbsp; und&nbsp; $\rm Z$&nbsp; markieren drei Hamming–Codes unterschiedlicher Codelängen,&nbsp; nämlich mit&nbsp; $n = 7$,&nbsp; $n = 15$&nbsp; und&nbsp; $n = 31$.
 +
 
*Das Codiersystem&nbsp; $\rm W$&nbsp; ist durch die Kenngrößen&nbsp; $R = 0.5$&nbsp; und&nbsp; $10 \ · \ \lg {E_{\rm B}/N_0} = 3 {\rm dB}$&nbsp; gekennzeichnet.
 
*Das Codiersystem&nbsp; $\rm W$&nbsp; ist durch die Kenngrößen&nbsp; $R = 0.5$&nbsp; und&nbsp; $10 \ · \ \lg {E_{\rm B}/N_0} = 3 {\rm dB}$&nbsp; gekennzeichnet.
  
Zeile 30: Zeile 33:
  
  
 
+
Hinweise:  
 
+
*Die Aufgabe gehört zum Themengebiet von Kapitel&nbsp;  [[Kanalcodierung/Informationstheoretische_Grenzen_der_Kanalcodierung|"Informationstheoretische Grenzen der Kanalcodierung"]].
''Hinweise:''
+
*Die Aufgabe gehört zum Themengebiet von Kapitel&nbsp;  [[Kanalcodierung/Informationstheoretische_Grenzen_der_Kanalcodierung|Informationstheoretische Grenzen der Kanalcodierung]].  
+
* Die informationstheoretische Grenze&nbsp; "Kanalkapazität"&nbsp; bezieht sich auf die Fehlerwahrscheinlichkeit&nbsp; $\rm BER =0$.
* Die informationstheoretische Grenze „Kanalkapazität” bezieht sich auf die Fehlerwahrscheinlichkeit&nbsp; $\rm BER =0$.  
+
 
*Die eingezeichneten Punkte realer Übertragungssysteme ergeben sich dagegen unter der Annahme&nbsp; $\rm BER = 10^{–5}$.
 
*Die eingezeichneten Punkte realer Übertragungssysteme ergeben sich dagegen unter der Annahme&nbsp; $\rm BER = 10^{–5}$.
 
   
 
   
Zeile 43: Zeile 46:
 
===Fragebogen===
 
===Fragebogen===
 
<quiz display=simple>
 
<quiz display=simple>
{Welche der Punkte gehören zu welchem Hamming–Code? ''Hinweis:'' &nbsp; Die Grafik wurde für&nbsp; $\rm BER = 10^{–5}$&nbsp; erstellt.
+
{Welche der Punkte gehören zu welchem Hamming–Code?&nbsp; Hinweis: &nbsp; Die Grafik wurde für&nbsp; $\rm BER = 10^{–5}$&nbsp; erstellt.
 
|type="[]"}
 
|type="[]"}
 
+ $\rm X$&nbsp; bezeichnet den&nbsp; $(7, 4, 3)$–Hamming–Code.
 
+ $\rm X$&nbsp; bezeichnet den&nbsp; $(7, 4, 3)$–Hamming–Code.
Zeile 49: Zeile 52:
 
+ $\rm Z$&nbsp; bezeichnet den&nbsp; $(31, 26, 3)$–Hamming–Code.
 
+ $\rm Z$&nbsp; bezeichnet den&nbsp; $(31, 26, 3)$–Hamming–Code.
  
{In welche Richtung(en) werden sich die Punkte&nbsp; $\rm X$,&nbsp; $\rm Y$&nbsp; und&nbsp; $\rm Z$&nbsp; verschieben, wenn die Grafik für&nbsp; $\rm BER = 10^{–10}$&nbsp; erstellt werden soll?
+
{In welche Richtung(en) werden sich die Punkte&nbsp; $\rm X$,&nbsp; $\rm Y$&nbsp; und&nbsp; $\rm Z$&nbsp; verschieben,&nbsp; wenn die Grafik für&nbsp; $\rm BER = 10^{–10}$&nbsp; erstellt werden soll?
 
|type="[]"}
 
|type="[]"}
 
- Nach links,
 
- Nach links,
Zeile 55: Zeile 58:
 
- nach oben.
 
- nach oben.
  
{Bis zu welcher Coderate&nbsp; $R_{\rm max}$&nbsp; könnte man ein System mit gleichem&nbsp; $E_{\rm B}/N_{0} = 3 \ {\rm dB}$&nbsp; wie System  &nbsp;$\rm W$&nbsp; betreiben?
+
{Bis zu welcher Coderate&nbsp; $R_{\rm max}$&nbsp; könnte man ein System mit gleichem&nbsp; $E_{\rm B}/N_{0} = 3 \ {\rm dB}$ &nbsp; wie System  &nbsp;$\rm W$&nbsp; betreiben?
 
|type="{}"}
 
|type="{}"}
 
$R_{\rm max} \ = \ $ {  0.84 3% }
 
$R_{\rm max} \ = \ $ {  0.84 3% }

Version vom 28. September 2022, 15:34 Uhr

Kanalkapazität (grün) und Coderaten (rote Punkte) einiger etablierter Systeme

Die Grafik zeigt die maximal zulässige Coderate  $R < C$  gemäß Shannons  Kanalcodierungstheorem:

  • Die grüne Grenzkurve gibt die Kanalkapazität  $C$  für den AWGN–Kanal unter der Voraussetzung eines binären Eingangssignals  („BPSK”)  an.
  • In der  Aufgabe 1.17Z  wird hierfür eine einfache Näherung angegeben.  Mit der zweiten Abszisse
$$x = \frac {1.6\,{\rm dB} + 10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 }{1\,{\rm dB}}$$
ergibt sich näherungsweise:
$$C \approx \hspace{0.15cm} \left\{ \begin{array}{c} 1 - {\rm e}^{- 0.4 \hspace{0.05cm} \cdot \hspace{0.05cm} x} \\ \\ 0 \end{array} \right.\quad \begin{array}{*{1}c} {\rm f\ddot{u}r\hspace{0.15cm}} x > 0, \\ \\{\rm f\ddot{u}r\hspace{0.15cm}} x < 0. \end{array}$$
  • Gilt  $R < C$,  so kann ein Code gefunden werden,  der bei unendlich langen Blöcken  $(n → ∞)$  zur Fehlerwahrscheinlichkeit „Null” führt.
  • Wie dieser Code aussieht,  ist durch das Kanalcodierungstheorem nicht festgelegt und spielt für diese Aufgabe auch keine Rolle.


In die Grafik als Punkte eingezeichnet sind die Kenngrößen etablierter Codiersysteme:

  • Die Punkte  $\rm X$,  $\rm Y$  und  $\rm Z$  markieren drei Hamming–Codes unterschiedlicher Codelängen,  nämlich mit  $n = 7$,  $n = 15$  und  $n = 31$.
  • Das Codiersystem  $\rm W$  ist durch die Kenngrößen  $R = 0.5$  und  $10 \ · \ \lg {E_{\rm B}/N_0} = 3 {\rm dB}$  gekennzeichnet.



Hinweise:

  • Die informationstheoretische Grenze  "Kanalkapazität"  bezieht sich auf die Fehlerwahrscheinlichkeit  $\rm BER =0$.
  • Die eingezeichneten Punkte realer Übertragungssysteme ergeben sich dagegen unter der Annahme  $\rm BER = 10^{–5}$.



Fragebogen

1

Welche der Punkte gehören zu welchem Hamming–Code?  Hinweis:   Die Grafik wurde für  $\rm BER = 10^{–5}$  erstellt.

$\rm X$  bezeichnet den  $(7, 4, 3)$–Hamming–Code.
$\rm Y$  bezeichnet den  $(15, 11, 3)$–Hamming–Code.
$\rm Z$  bezeichnet den  $(31, 26, 3)$–Hamming–Code.

2

In welche Richtung(en) werden sich die Punkte  $\rm X$,  $\rm Y$  und  $\rm Z$  verschieben,  wenn die Grafik für  $\rm BER = 10^{–10}$  erstellt werden soll?

Nach links,
nach rechts,
nach oben.

3

Bis zu welcher Coderate  $R_{\rm max}$  könnte man ein System mit gleichem  $E_{\rm B}/N_{0} = 3 \ {\rm dB}$   wie System  $\rm W$  betreiben?

$R_{\rm max} \ = \ $

4

Um welchen Faktor  $A > 1$  könnte die Sendeleistung von System  $\rm W$  nach der Kanalkapazitätskurve mit  $ R = 0.5$  herabgesetzt werden?

$A \ = \ $


Musterlösung

(1)  Richtig sind alle Lösungsvorschläge:

  • Aus der Grafik erkennt man bereits, dass die Rate von  $\rm Z$  größer ist als die Rate von  $\rm Y$  und die Rate von  $\rm Y$  größer ist als die Rate von  $\rm X$.
  • Die tatsächlichen Raten dieser drei Systeme sind $R_{\rm X} = 4/7 = 0.571$, $R_{\rm Y} = 11/15 = 0.733$ und $R_{\rm Z} = 26/31 = 0.839$.
  • Da zudem der $(31, 26, 3)$–Hamming–Code   ⇒   Code  $\rm Z$  die größte Codewortlänge $n$ aufweist, benötigt er trotz größerer Coderate  $R$  für  ${\rm BER} = 10^{–5}$  ein geringeres  $E_{\rm B}/N_{0}$  als die beiden anderen Hamming–Codes.


(2)  Richtig ist die Antwort 2:

  • Für eine kleinere Bitfehlerrate benötigt man stets ein größeres $E_{\rm B}/N_{0}$.
  • Eine vertikale Verschiebung gibt es nicht, da sich auch mit $\rm BER = 10^{–10}$ an den Coderaten nichts ändert.


(3)  Für den logarithmierten AWGN–Parameter $10 · \lg {E_{\rm B}/N_0} = 3 \ {\rm dB}$ ergibt sich die vorne angegebene Hilfsgröße $x = 1.6 + 3 = 4.6.$ Damit erhält man:

$$R_{\rm max} = C (x = 4.6)= 1 - {\rm e}^{- 0.4 \hspace{0.05cm} \cdot \hspace{0.05cm} 4.6} \hspace{0.15cm} \underline{= 0.84} \hspace{0.05cm}.$$


(4)  Entsprechend der vorgegebenen Gleichung gilt nun:

$$1 - {\rm e}^{- 0.4 \hspace{0.05cm} \cdot \hspace{0.05cm} x} = 0.5 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} x = \frac{-{\rm ln}(0.5)}{-0.4} = 1.73\hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 = 1.73 - 1.6 = 0.13 \,{\rm dB}\hspace{0.05cm}.$$

$10 · \lg {E_{\rm B}/N_0}$ könnte demnach um $3 \ \rm dB - 0.13 \ dB = 2.87 \ dB$ herabgesetzt werden, also um den Faktor $A = 10^{0.287}\hspace{0.15cm} \underline{= 1.94} \hspace{0.05cm}.$