Applets:Periodendauer periodischer Signale: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(72 dazwischenliegende Versionen von 3 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
 +
{{LntAppletLinkDeEn|signalPeriod|signalPeriod_en}}
  
<p>
 
{{BlaueBox|TEXT=
 
<B style="font-size:18px">Funktion:</B>
 
$$x(t) = A_1\cdot cos\Big(2\pi f_1\cdot t- \frac{2\pi}{360}\cdot \phi_1\Big)+A_2\cdot cos\Big(2\pi f_2\cdot t- \frac{2\pi}{360}\cdot \phi_2\Big)$$
 
}}
 
</p>
 
  
<html>
+
==Programmbeschreibung==
<head>
+
<br>
    <meta charset="utf-8" />
+
Dieses Applet zeichnet den Verlauf und berechnet die Periodendauer&nbsp; $T_0$&nbsp; der periodischen Funktion
    <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/jsxgraph/0.99.6/jsxgraphcore.js"></script>
+
:$$x(t) = A_1\cdot \cos\left(2\pi f_1\cdot t- \varphi_1\right)+A_2\cdot \cos\left(2\pi f_2\cdot t- \varphi_2\right).$$
    <!-- <script type="text/javascript" src="https://www.lntwww.de/MathJax/unpacked/MathJax.js?config=TeX-AMS-MML_HTMLorMML-full,local/mwMathJaxConfig"></script> -->
 
    <!-- <script type="text/javascript" src="https://cdn.rawgit.com/mathjax/MathJax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML-full"></script> -->
 
<style>
 
            .wrapper1{
 
          display:grid;
 
          grid-row-gap:1em;
 
      justify-items:stretch;
 
      align-items:stretch;
 
        }
 
  
        .wrapper1 >div{
+
Bitte beachten Sie:
          padding:0em;
+
*Die Phasen&nbsp; $\varphi_i$&nbsp; sind hier im Bogenmaß einzusetzen.&nbsp; Umrechnung aus dem Eingabewert: &nbsp;  
          border: 1px solid black;
+
:$$\varphi_i \text{[im Bogenmaß]} =\varphi_i \text{[in Grad]}/360 \cdot 2\pi.$$
        }
+
*Ausgegeben werden auch der Maximalwert&nbsp; $x_{\rm max}$&nbsp; und ein Signalwert&nbsp; $x(t_*)$&nbsp; zu einer vorgebbaren Zeit&nbsp; $t_*$.
        .wrapper1 >div:nth-child(odd){
+
*Das aufzurufende Applet verwendet die englischen Begriffe im Gegensatz zu dieser deutschen Beschreibung.
        }
 
        .wrapper2{
 
          display:grid;
 
          grid-row-gap:1em;
 
                grid-template-columns:70% 30%;
 
                justify-items:stretch;
 
                align-items:stretch;
 
  
        }
 
  
        .wrapper2 >div{
 
          padding:0em;
 
          border: 1px solid black;
 
    grid-template-columns:repeat(2);}
 
  
 +
==Theoretischer Hintergrund==
 +
<br>
 +
Ein ''periodisches Signal''&nbsp; $x(t)$&nbsp; liegt genau dann vor, wenn dieses nicht konstant ist und für alle beliebigen Werte von&nbsp; $t$&nbsp; und alle ganzzahligen Werte von&nbsp; $i$&nbsp; mit einem geeigneten&nbsp; $T_{0}$&nbsp; gilt: &nbsp; $x(t+i\cdot T_{0}) = x(t).$
 +
*Man bezeichnet&nbsp; $T_0$&nbsp; als die&nbsp; '''Periodendauer'''&nbsp; und&nbsp;  $f_0 = 1/T_0$&nbsp; als die&nbsp; '''Grundfrequenz'''.
  
    .box4{
+
*Bei einer harmonischen Schwingung&nbsp; $x_1(t) = A_1\cdot \cos\left(2\pi f_1\cdot t- \varphi_1\right)$&nbsp; gilt&nbsp; $f_0 = f_1$&nbsp; und&nbsp; $T_0 = 1/f_1$,&nbsp; unabhängig von der Phase&nbsp; $\varphi_1$&nbsp; und der Amplitude&nbsp; $A_1 \ne 0$.
      grid-column:1/3;
 
      grid-row:4/4;
 
      border: 1px solid black;
 
    }
 
    .box5{
 
      grid-column:2/3;
 
      grid-row:4/4;
 
      border: 1px solid black;
 
    }
 
  
    .button {
 
        background-color: black;
 
        border: none;
 
        color: white;
 
        font-family: arial;
 
        padding: 8px 20px;
 
        text-align: center;
 
        text-decoration: none;
 
        display: inline-block;
 
        font-size: 16px;
 
        border-radius: 15px;
 
    }
 
    .button:active {
 
        background-color: #939393;
 
    }
 
  </style>
 
</head>
 
  
<body onload="drawNow()">
+
{{BlaueBox|TEXT=
<!-- Resetbutton, Checkbox und Formel -->
+
$\text{Berechnungsvorschrift:}$&nbsp; Setzt sich das periodisches Signal&nbsp; $x(t)$&nbsp; wie in diesem Applet aus zwei Anteilen&nbsp; $x_1(t)$&nbsp; und&nbsp; $x_2(t)$&nbsp; zusammen, dann gilt mit&nbsp; $A_1 \ne 0$,&nbsp; $f_1 \ne 0$,&nbsp; $A_2 \ne 0$,&nbsp; $f_2 \ne 0$&nbsp; für Grundfrequenz und Periodendauer:
<p>
 
    <input type="checkbox" id="gridbox" onclick="showgrid();" checked> <label for="gridbox">Gitterlinien Zeigen</label>
 
    <button class="button" onclick="drawNow();">Reset</button>
 
</p>
 
<div class="wrapper1">
 
<div id="cnfBoxHtml" class="jxgbox" style="width:600px; height:150px; float:top; margin:-10px 20px 100px 0px;"></div>
 
<div id="pltBoxHtml" class="jxgbox" style="width:600px; height:600px; border:1px solid black; margin:-100px 20px 10px 0px;"></div>
 
</div>
 
  
<!-- Ausgabefelder -->
+
:$$f_0 = {\rm ggT}(f_1, \ f_2) \hspace{0.3cm} \Rightarrow \hspace{0.3cm}T_0 = 1/f_0.$$
 +
Hierbei bezeichnet&nbsp; $\rm ggT$&nbsp; den '''größten gemeinsamen Teiler'''.}}
  
<div class="wrapper2">
 
  
  <div class="box4">
+
{{GraueBox|TEXT=   
<table>
+
$\text{Beispiele:}$ &nbsp; Im Folgenden bezeichnen&nbsp; $f_0'$,&nbsp; $f_1'$&nbsp; und $f_2'$&nbsp; jeweils auf $1\ \rm kHz$ normierte Signalfrequenzen:
    <tr>
 
        <td>$x(t)$= <span id="x(t)"></span>  $\quad$ </td>
 
        <td>$x(t+ T_0)$= <span id="x(t+T_0)"></span>  $\quad$ </td>
 
        <td>$x(t+2T_0)$= <span id="x(t+2T_0)"></span> $\quad$ </td>
 
        <td>$x_{\text{max}}$= <span id="x_max"></span>  $\quad$ </td>
 
        <td style="color:blue;">$T_0$= <span id="T_0"></span>  $\quad$ </td>
 
    </tr>
 
</table>
 
</div>
 
  
  <div class="box5">
+
'''(a)''' &nbsp; $f_1' = 1.0$, &nbsp; $f_2' = 3.0$ &nbsp; &rArr; &nbsp; $f_0' = {\rm ggt}(1.0, \ 3.0) = 1.0$ &nbsp; &rArr; &nbsp; $T_0 =  1.0\ \rm ms$;
  
<p>
+
'''(b)''' &nbsp; $f_1' = 1.0$, &nbsp; $f_2' = 3.5$ &nbsp; &rArr; &nbsp; $f_0' = {\rm ggt}(1.0, \ 3.5)= 0.5$ &nbsp; &rArr; &nbsp; $T_0 =  2.0\ \rm ms$;
    <input type="checkbox" id="gridbox" onclick="showgrid();" checked> <label for="gridbox">Gitterlinien zeigen</label>
 
    <button class="button" onclick="drawNow();">Reset</button>
 
</p>
 
  
</div>
+
'''(c)''' &nbsp; $f_1' = 1.0$, &nbsp; $f_2' = 2.5$ &nbsp; &rArr; &nbsp; $f_0' = {\rm ggt}(1.0, \ 2.5) = 0.5$ &nbsp; &rArr; &nbsp; $T_0 =  2.0\ \rm ms$;
</div>
 
  
 +
'''(d)''' &nbsp; $f_1' = 0.9$, &nbsp; $f_2' = 2.5$ &nbsp; &rArr; &nbsp; $f_0' = {\rm ggt}(0.9, \ 2.5) = 0.1$ &nbsp; &rArr; &nbsp; $T_0 =  10.0 \ \rm ms$;
  
<script type="text/javascript">
+
'''(e)''' &nbsp; $f_2' = \sqrt{2} \cdot f_1' $ &nbsp; &rArr; &nbsp; $f_0' = {\rm ggt}(f_1', \ f_2') \to 0$ &nbsp; &rArr; &nbsp; $T_0 \to \infty$&nbsp; &rArr; &nbsp; Das Signal&nbsp; $x(t)$&nbsp; ist nicht periodisch.}}
function drawNow() {
 
        // Grundeinstellungen der beiden Applets
 
        JXG.Options.text.useMathJax = true;
 
        cnfBox = JXG.JSXGraph.initBoard('cnfBoxHtml', {
 
            showCopyright: false, showNavigation: false, axis: false,
 
            grid: false, zoom: { enabled: false }, pan: { enabled: false },
 
            boundingbox: [-1, 2.2, 12.4, -2.2]
 
        });
 
        pltBox = JXG.JSXGraph.initBoard('pltBoxHtml', {
 
            showCopyright: false, axis: false,
 
            zoom: { factorX: 1.1, factorY: 1.1, wheel: true, needshift: true, eps: 0.1 },
 
            grid: false, boundingbox: [-0.5, 2.2, 12.4, -2.2]
 
        });
 
        cnfBox.addChild(pltBox);
 
        // Einstellungen der Achsen
 
        xaxis = pltBox.create('axis', [[0, 0], [1, 0]], {
 
            name: '$\\dfrac{t}{T}$',
 
            withLabel: true, label: { position: 'rt', offset: [-25, -10] }
 
        });
 
        yaxis = pltBox.create('axis', [[0, 0], [0, 1]], {
 
            name: '$x(t)$',
 
            withLabel: true, label: { position: 'rt', offset: [10, -5] }
 
        });
 
        // Erstellen der Schieberegler
 
        sldA1 = cnfBox.create('slider', [ [-0.7, 1.5], [3, 1.5], [0, 0.5, 1] ], {
 
            suffixlabel: '$A_1=$',
 
            unitLabel: 'V', snapWidth: 0.01
 
            }),
 
        sldF1 = cnfBox.create('slider', [ [-0.7, 0.5], [3, 0.5], [0, 1, 10] ], {
 
            suffixlabel: '$f_1=$',
 
            unitLabel: 'kHz', snapWidth: 0.1
 
        }),
 
        sldPHI1 = cnfBox.create('slider', [ [-0.7, -0.5], [3, -0.5], [-180, 0, 180] ], {
 
            suffixlabel: '$\\phi_1=$',
 
            unitLabel: 'Grad', snapWidth: 5
 
        }),
 
        sldA2 = cnfBox.create('slider', [ [6, 1.5], [9.7, 1.5], [0, 0.5, 1] ], {
 
            suffixlabel: '$A_2=$',
 
            unitLabel: 'V', snapWidth: 0.01
 
        }),
 
        sldF2 = cnfBox.create('slider', [ [6, 0.5], [9.7, 0.5], [0, 2, 10] ], {
 
            suffixlabel: '$f_2=$',
 
            unitLabel: 'kHz', snapWidth: 0.1
 
        }),
 
        sldPHI2 = cnfBox.create('slider', [ [6, -0.5], [9.7, -0.5], [-180, 90, 180] ], {
 
            suffixlabel: '$\\phi_2=$',
 
            unitLabel: 'Grad', snapWidth: 5
 
        }),
 
        sldT = cnfBox.create('slider', [ [-0.7, -1.5], [3, -1.5], [0, 0, 10] ], {
 
            suffixlabel: '$t=$',
 
            unitLabel: 's', snapWidth: 0.2
 
        }),
 
        // Definition der Funktion
 
        signaldarstellung = pltBox.create('functiongraph', [function(x) {
 
            return (sldA1.Value() * Math.cos(2 * Math.PI * sldF1.Value() * x - 2 * Math.PI * sldPHI1.Value() / 360) + sldA2.Value() * Math.cos(2 * Math.PI * sldF2.Value() * x - 2 * Math.PI * sldPHI2.Value() / 360))
 
        }], {
 
            strokeColor: "red"
 
        });
 
        // Definition des Punktes p_T0, des Hilfspunktes p_T0h und der Geraden l_T0 für Periodendauer T_0
 
        p_T0 = pltBox.create('point', [
 
            function() {
 
                return (Math.round(getT0() * 100) / 100);
 
            },
 
            function() {
 
                return sldA1.Value() * Math.cos(2 * Math.PI * sldF1.Value() * (Math.round(getT0() * 100) / 100) - 2 * Math.PI * sldPHI1.Value() / 360) +
 
                    sldA2.Value() * Math.cos(2 * Math.PI * sldF2.Value() * (Math.round(getT0() * 100) / 100) - 2 * Math.PI * sldPHI2.Value() / 360);
 
            }],
 
            { color: "blue", fixed: true, label: false, size: 1, name: '' }
 
        );
 
        p_T0h = pltBox.create('point',
 
            [function() { return (Math.round(getT0() * 100) / 100); }, 2],
 
            { visible: false, color: "blue", fixed: true, label: false, size: 1, name: '' }
 
        );
 
        l_T0 = pltBox.create('line', [p_T0, p_T0h])
 
        // Bestimmung des Wertes T_0 mit der Funktion von Siebenwirth
 
        setInterval(function() {
 
            document.getElementById("T_0").innerHTML = Math.round(getT0() * 100) / 100;
 
          }, 50);
 
        function isInt(n) {
 
            return n % 1 === 0;
 
        }
 
        function getT0() {
 
            var A, B, C, Q;
 
            if (sldF1.Value() < sldF2.Value()) {
 
                A = sldF1.Value();
 
                B = sldF2.Value();
 
            } else {
 
                B = sldF1.Value();
 
                A = sldF2.Value();
 
            }
 
            // console.log('Berechne T0 mit A=' + A, 'B=' + B);
 
            for (var x = 1; x <= 100; x++) {
 
                C = A / x;
 
                Q = B / C;
 
                // console.log(x + '. Durchgang: C = ' + C, 'Q = ' + Q);
 
                if (isInt(Q)) {
 
                    // console.log('Q ist eine Ganzzahl!!! T0 ist damit ', 1 / C);
 
                    return 1 / C;
 
                }
 
                if (x === 10) {
 
                    return 10;
 
                }
 
                if ((1 / C) > 10)
 
                    return 10
 
            }
 
        }
 
        // Ausgabe des Wertes x(t)
 
        setInterval(function() {
 
            document.getElementById("x(t)").innerHTML = Math.round((sldA1.Value() * Math.cos(2 * Math.PI * sldF1.Value() * sldT.Value() - 2 * Math.PI * sldPHI1.Value() / 360) + sldA2.Value() * Math.cos(2 * Math.PI * sldF2.Value() * sldT.Value() - 2 * Math.PI * sldPHI2.Value() /
 
                360)) * 1000) / 1000;
 
        }, 50);
 
        // Ausgabe des Wertes x(t+T_0)
 
        setInterval(function() {
 
            document.getElementById("x(t+T_0)").innerHTML = Math.round((sldA1.Value() * Math.cos(2 * Math.PI * sldF1.Value() * (sldT.Value() + Math.round(getT0() * 1000) / 1000) - sldPHI1.Value()) + sldA2.Value() * Math.cos(2 * Math.PI * sldF2.Value() * (sldT.Value() +
 
                Math.round(getT0() * 1000) / 1000) - sldPHI2.Value())) * 1000) / 1000;
 
        }, 50);
 
        // Ausgabe des Wertes x(t+2T_0)
 
        setInterval(function() {
 
            document.getElementById("x(t+2T_0)").innerHTML = Math.round((sldA1.Value() * Math.cos(2 * Math.PI * sldF1.Value() * (sldT.Value() + 2 * Math.round(getT0() * 1000) / 1000) - sldPHI1.Value()) + sldA2.Value() * Math.cos(2 * Math.PI * sldF2.Value() * (sldT.Value() +
 
                2 * Math.round(getT0() * 1000) / 1000) - sldPHI2.Value())) * 1000) / 1000;
 
        }, 50);
 
        // Ausgabe des Wertes x_max
 
        setInterval(function() {
 
            var x = new Array(50000);
 
            for (var i = 0; i < 50001; i++) {
 
                x[i] = Math.round((sldA1.Value() * Math.cos(2 * Math.PI * sldF1.Value() * (i / 1000) - 2 * Math.PI * sldPHI1.Value() / 360) + sldA2.Value() * Math.cos(2 * Math.PI * sldF2.Value() * (i / 1000) - 2 * Math.PI * sldPHI2.Value() / 360)) * 1000) / 1000;
 
            }
 
            document.getElementById("x_max").innerHTML = Math.max.apply(Math, x);
 
        }, 50);
 
    };
 
    // Definition der Funktion zum An- und Ausschalten des Koordinatengitters
 
    function showgrid() {
 
        if (gridbox.checked) {
 
            xaxis = pltBox.create('axis', [ [0, 0], [1, 0] ], {});
 
            yaxis = pltBox.create('axis', [ [0, 0], [0, 1] ], {});
 
        } else {
 
            xaxis.removeTicks(xaxis.defaultTicks);
 
            yaxis.removeTicks(yaxis.defaultTicks);
 
        }
 
        pltBox.fullUpdate();
 
    };
 
</script>
 
</body>
 
</html>
 
  
{{Display}}
+
 
 +
$\text{Anmerkung:}$&nbsp; Die Periodendauer könnte auch als&nbsp; '''kleinstes gemeinsames Vielfaches'''&nbsp; $\rm (kgV)$&nbsp; entsprechend&nbsp; $T_0 = {\rm kgV}(T_1, \ T_2)$&nbsp; ermittelt werden:
 +
 
 +
:'''(c)''' &nbsp; $T_1 = 1.0\ \rm ms$, &nbsp; $T_2 = 0.4\ \rm kHz$ &nbsp; &rArr; &nbsp; $T_0 = {\rm kgV}(1.0, \ 0.4) \ \rm ms =  2.0\ \rm ms$
 +
 
 +
Bei allen anderen Parameterwerten würde es aber zu numerischen Problemen kommen, zum Beispiel
 +
 
 +
:'''(a)''' &nbsp; $T_1 = 1.0\ \rm ms$ und $T_2 = 0.333\text{...} \ \rm ms$ besitzen aufgrund der begrenzten Darstellung reeller Zahlen kein kleinstes gemeinsames Vielfaches.
 +
 
 +
==Versuchsdurchführung==
 +
<br>
 +
*Wählen Sie zunächst die Nummer&nbsp; $(1,\ 2$, ... $)$&nbsp; der zu bearbeitenden Aufgabe.&nbsp; Die Nummer&nbsp; $0$&nbsp; entspricht &bdquo;Reset&rdquo;:&nbsp; Einstellung wie beim Programmstart.
 +
*Eine Aufgabenbeschreibung wird angezeigt.&nbsp; Parameterwerte sind angepasst.&nbsp; Lösung nach Drücken von &bdquo;Musterlösung&rdquo;.
 +
*$A_1'$&nbsp; und&nbsp; $A_2'$&nbsp;  bezeichnen hier die auf&nbsp; $1\ \rm V$&nbsp; normierten  Signalamplituden.&nbsp; $ f_0'$,&nbsp; $f_1'$&nbsp; und&nbsp; $f_2'$&nbsp; sind die auf&nbsp; $1\ \rm kHz$&nbsp; normierten Frequenzen.
 +
 
 +
 +
{{BlaueBox|TEXT= 
 +
'''(1)''' &nbsp; Es gelte&nbsp; $A_1' = 1.0, \ A_2' = 0.5, \ f_1' = 2.0, \ f_2' = 2.5, \ \varphi_1 = 0^\circ \ \varphi_2 = 90^\circ\text{.}$&nbsp; Wie groß ist die Periodendauer&nbsp; $T_0$?}}
 +
 
 +
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Die Periodendauer ist&nbsp; $T_0 = 2.0 \ \rm ms$&nbsp; wegen&nbsp; ${\rm ggt}(2.0, 2.5) = 0.5$.
 +
 
 +
{{BlaueBox|TEXT= 
 +
'''(2)''' &nbsp; Variieren Sie&nbsp;  $\varphi_1$&nbsp; und&nbsp; $\varphi_2$&nbsp; im gesamten möglichen Bereich $\pm 180^\circ\text{.}$&nbsp; Wie wirkt sich dies auf die Periodendauer&nbsp; $T_0$&nbsp; aus?}}
 +
 
 +
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Die Periodendauer&nbsp; $T_0 = 2.0 \ \rm ms$&nbsp; bleibt für alle&nbsp;  $\varphi_1$&nbsp; und&nbsp; $\varphi_2$&nbsp; erhalten.
 +
 
 +
{{BlaueBox|TEXT= 
 +
'''(3)''' &nbsp; Wählen Sie die Voreinstellung  &nbsp; &rArr; &nbsp; &bdquo;Recall Parameters&rdquo;.&nbsp; Variieren Sie&nbsp; $A_1'$&nbsp; im gesamten möglichen Bereich&nbsp; $0 \le A_1' \le 1$.}}
 +
 
 +
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Die Periodendauer&nbsp; $T_0 = 2.0 \ \rm ms$&nbsp; bleibt erhalten mit Ausnahme von&nbsp; $A_1' =0$.&nbsp; In letzerem Fall ist&nbsp; $T_0 = 0.4 \ \rm ms$.
 +
 
 +
{{BlaueBox|TEXT= 
 +
'''(4)''' &nbsp; Wählen Sie die Voreinstellung  &nbsp; &rArr; &nbsp; &bdquo;Recall Parameters&rdquo; und variieren Sie&nbsp; $f_2' $?&nbsp; Hat dies Auswirkungen auf&nbsp; $T_0$?&nbsp; Welcher Wert ergibt sich für&nbsp; $f_2' = 0.2$.}}
 +
 
 +
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Die Periodendauer springt hin und her.&nbsp; Für&nbsp; $f_2' = 0.2$&nbsp; ergibt sich&nbsp; $T_0 = 5.0 \ \rm ms$ &nbsp; wegen &nbsp; ${\rm ggt}(2.0, 0.2) = 0.2$.
 +
 
 +
{{BlaueBox|TEXT= 
 +
'''(5)''' &nbsp; Es gelte&nbsp; $A_1' = 1.0, \ A_2' = 0.5, \ f_1' = 0.2, \ f_2' = 2.5, \ \varphi_1 = 0^\circ \ \varphi_2 = 90^\circ\text{.}$&nbsp;  Wie groß ist&nbsp; $T_0$?&nbsp; Speichern Sie diese Einstellung mit &bdquo;Store  Parameters&rdquo;.}}
 +
 
 +
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Die Periodendauer ist&nbsp; $T_0 = 10.0 \ \rm ms$&nbsp; wegen&nbsp; ${\rm ggt}(0.2, 2.5) = 0.1$.
 +
 
 +
{{BlaueBox|TEXT= 
 +
'''(6)''' &nbsp; Wählen Sie die letzte Einstellung  &nbsp; &rArr; &nbsp; &bdquo;Recall Parameters&rdquo; und ändern Sie&nbsp; $f_2' = 0.6$.&nbsp;  Speichern Sie diese Einstellung mit &bdquo;Store Parameters&rdquo;:}}
 +
 
 +
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Die Periodendauer ist&nbsp; $T_0 = 5.0 \ \rm ms$&nbsp; wegen&nbsp; ${\rm ggt}(0.2,0.6) = 0.2$.
 +
 
 +
{{BlaueBox|TEXT= 
 +
'''(7)''' &nbsp; Wie groß ist bei gleicher Einstellung der maximale Signalwert&nbsp; $x_{\rm max}\text{?}$}}
 +
 
 +
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$&nbsp;$x_{\rm max} =x(t_* + i \cdot T_0) = 1.38 \ {\rm V} < A_1 + A_2$&nbsp; mit&nbsp; $t_* = 0.3 \ \rm ms$&nbsp; und&nbsp; $T_0 = 5.0 \ \rm ms$.
 +
{{BlaueBox|TEXT= 
 +
'''(8)''' &nbsp; Welcher Unterschied ergibt sich mit&nbsp; $\varphi_2 = 0^\circ \hspace{0.1cm}\Rightarrow\hspace{0.1cm}$ Summe zweier Cosinusschwingungen?}}
 +
 
 +
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$&nbsp;$t_* = 0$,&nbsp; $T_0 = 5.0 \ \rm ms$&nbsp; &rArr; &nbsp; $x_{\rm max}  =x(t_* + i \cdot T_0) = 1.5 \ {\rm V}=A_1 + A_2$.
 +
 
 +
{{BlaueBox|TEXT= 
 +
'''(9)''' &nbsp; Nun gelte&nbsp; $\varphi_1 = \varphi_2 = 90^\circ \hspace{0.1cm}\Rightarrow\hspace{0.1cm}$ Summe zweier Sinusschwingungen.&nbsp; Wie groß ist hier der maximale Signalwert&nbsp; $x_{\rm max}\text{?}$}}
 +
 
 +
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Der maximale Signalwert ist nun&nbsp; $x_{\rm max} = 1.07 \ {\rm V} < A_1 + A_2$.&nbsp;Dieser Wert ergibt sich mit&nbsp; $T_0 = 5.0 \ \rm ms$&nbsp; sowie&nbsp; $t_* = 0.6 \ \rm ms$&nbsp; bzw.&nbsp; $t_* = 1.9 \ \rm ms$.
 +
 
 +
 
 +
 
 +
==Zur Handhabung der Applet-Variante 1==
 +
 
 +
[[Datei:Anleitung_Periodendauer.png|right|frame|Bildschirmabzug der englischen Version]]
 +
 
 +
&nbsp; &nbsp; '''(A)''' &nbsp; &nbsp; Parametereingabe für Schwingung 1
 +
 
 +
&nbsp; &nbsp; '''(B)''' &nbsp; &nbsp; Parametereingabe für Schwingung 2 und der Zeit&nbsp; $t_*$.
 +
 
 +
&nbsp; &nbsp; '''(C)''' &nbsp; &nbsp; Numerikausgabe des Hauptergebnisses&nbsp; $T_0$;&nbsp; graphische Verdeutlichung durch rote Linie
 +
 
 +
&nbsp; &nbsp; '''(D)''' &nbsp; &nbsp; Abspeichern von Parametersätzen
 +
 
 +
&nbsp; &nbsp; '''(E)''' &nbsp; &nbsp; Zurückholen von Parametersätzen
 +
 
 +
&nbsp; &nbsp; '''(F)''' &nbsp; &nbsp; Ausgabe von&nbsp; $x_{\rm max}$&nbsp; und der Signalwerte&nbsp; $x(t_*) = x(t_* + T_0)= x(t_* + 2T_0)$
 +
 
 +
&nbsp; &nbsp; '''(G)''' &nbsp; &nbsp; Grafikfeld zur Darstellung der Signale
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; Die Signalwerte&nbsp; $x(t_*) = x(t_* + T_0)= x(t_* + 2T_0)$&nbsp; werden durch grüne Punkte markiert
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;  Am unteren rechten Grafikrand finden Sie folgende Buttos:
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; '''(1)''' &nbsp; &nbsp; Zoom&ndash;Funktionen &bdquo;$+$&rdquo; (Vergrößern), &bdquo;$-$&rdquo; (Verkleinern) und $\rm o$ (Zurücksetzen)
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; '''(2)''' &nbsp; &nbsp; Verschieben mit &bdquo;$\leftarrow$&rdquo; (Ausschnitt nach links, Ordinate nach rechts),  &bdquo;$\uparrow$&rdquo; &bdquo;$\downarrow$&rdquo; und &bdquo;$\rightarrow$&rdquo;
 +
 
 +
&nbsp; &nbsp; '''(H)''' &nbsp; &nbsp; Aufgabenauswahl entsprechend der Aufgabennummer
 +
<br><br>
 +
In allen Applets oben rechts:&nbsp; &nbsp; Veränderbare grafische Oberflächengestaltung  &nbsp; &rArr;  &nbsp; '''Theme''':
 +
* Dark: &nbsp; schwarzer Hintergrund&nbsp; (wird von den Autoren empfohlen)
 +
*  Bright: &nbsp; weißer Hintergrund&nbsp; (empfohlen für Beamer und Ausdrucke)
 +
*  Deuteranopia: &nbsp; für Nutzer mit ausgeprägter Grün&ndash;Sehschwäche
 +
*  Protanopia: &nbsp; für Nutzer mit ausgeprägter Rot&ndash;Sehschwäche
 +
 
 +
 
 +
<br clear = all>
 +
 
 +
==Über die Autoren==
 +
Dieses interaktive Berechnungstool  wurde am&nbsp; [http://www.lnt.ei.tum.de/startseite Lehrstuhl für Nachrichtentechnik]&nbsp; der&nbsp; [https://www.tum.de/ Technischen Universität München]&nbsp; konzipiert und realisiert.
 +
*Die erste Version wurde 2004 von&nbsp; [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Ji_Li_.28Bachelorarbeit_EI_2003.2C_Diplomarbeit_EI_2005.29|Ji Li]]&nbsp; im Rahmen ihrer Diplomarbeit mit &bdquo;FlashMX&ndash;Actionscript&rdquo; erstellt&nbsp; (Betreuer:&nbsp; [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]] ).
 +
*2017 wurde dieses Programm  von&nbsp; [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#David_Jobst_.28Ingenieurspraxis_Math_2017.29|David Jobst]]&nbsp; im Rahmen seiner Ingenieurspraxis&nbsp; (Betreuer:&nbsp; [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_LÜT-Angehörige#Dr.-Ing._Tasn.C3.A1d_Kernetzky_.28bei_L.C3.9CT_von_2014-2022.29|Tasnád Kernetzky]])&nbsp;  auf  &bdquo;HTML5&rdquo; umgesetzt und neu gestaltet &nbsp; &rArr; &nbsp; Applet-Variante 1.&nbsp; Parallel dazu erarbeitete&nbsp; [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Bastian_Siebenwirth_.28Bachelorarbeit_LB_2017.29|Bastian Siebenwirth]]&nbsp; im Rahmen seiner Bachelorarbeit&nbsp; (Betreuer:&nbsp; [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]])&nbsp;  die HTML5-Variante 2.
 +
 
 +
==Nochmalige Aufrufmöglichkeit der Applets in neuem Fenster==
 +
Wir bieten hier zwei Applets zur gleichen Thematik mit unterschiedlichem Layout an:
 +
 
 +
{{LntAppletLink|signalPeriod|Applet-Variante 1 in neuem Tab öffnen}} &nbsp; &nbsp; {{LntAppletLink|signalPeriodS_en|Applet-Variante 2 in neuem Tab öffnen}}

Aktuelle Version vom 26. Oktober 2023, 11:05 Uhr

Applet in neuem Tab öffnen   Open English Version


Programmbeschreibung


Dieses Applet zeichnet den Verlauf und berechnet die Periodendauer  $T_0$  der periodischen Funktion

$$x(t) = A_1\cdot \cos\left(2\pi f_1\cdot t- \varphi_1\right)+A_2\cdot \cos\left(2\pi f_2\cdot t- \varphi_2\right).$$

Bitte beachten Sie:

  • Die Phasen  $\varphi_i$  sind hier im Bogenmaß einzusetzen.  Umrechnung aus dem Eingabewert:  
$$\varphi_i \text{[im Bogenmaß]} =\varphi_i \text{[in Grad]}/360 \cdot 2\pi.$$
  • Ausgegeben werden auch der Maximalwert  $x_{\rm max}$  und ein Signalwert  $x(t_*)$  zu einer vorgebbaren Zeit  $t_*$.
  • Das aufzurufende Applet verwendet die englischen Begriffe im Gegensatz zu dieser deutschen Beschreibung.


Theoretischer Hintergrund


Ein periodisches Signal  $x(t)$  liegt genau dann vor, wenn dieses nicht konstant ist und für alle beliebigen Werte von  $t$  und alle ganzzahligen Werte von  $i$  mit einem geeigneten  $T_{0}$  gilt:   $x(t+i\cdot T_{0}) = x(t).$

  • Man bezeichnet  $T_0$  als die  Periodendauer  und  $f_0 = 1/T_0$  als die  Grundfrequenz.
  • Bei einer harmonischen Schwingung  $x_1(t) = A_1\cdot \cos\left(2\pi f_1\cdot t- \varphi_1\right)$  gilt  $f_0 = f_1$  und  $T_0 = 1/f_1$,  unabhängig von der Phase  $\varphi_1$  und der Amplitude  $A_1 \ne 0$.


$\text{Berechnungsvorschrift:}$  Setzt sich das periodisches Signal  $x(t)$  wie in diesem Applet aus zwei Anteilen  $x_1(t)$  und  $x_2(t)$  zusammen, dann gilt mit  $A_1 \ne 0$,  $f_1 \ne 0$,  $A_2 \ne 0$,  $f_2 \ne 0$  für Grundfrequenz und Periodendauer:

$$f_0 = {\rm ggT}(f_1, \ f_2) \hspace{0.3cm} \Rightarrow \hspace{0.3cm}T_0 = 1/f_0.$$

Hierbei bezeichnet  $\rm ggT$  den größten gemeinsamen Teiler.


$\text{Beispiele:}$   Im Folgenden bezeichnen  $f_0'$,  $f_1'$  und $f_2'$  jeweils auf $1\ \rm kHz$ normierte Signalfrequenzen:

(a)   $f_1' = 1.0$,   $f_2' = 3.0$   ⇒   $f_0' = {\rm ggt}(1.0, \ 3.0) = 1.0$   ⇒   $T_0 = 1.0\ \rm ms$;

(b)   $f_1' = 1.0$,   $f_2' = 3.5$   ⇒   $f_0' = {\rm ggt}(1.0, \ 3.5)= 0.5$   ⇒   $T_0 = 2.0\ \rm ms$;

(c)   $f_1' = 1.0$,   $f_2' = 2.5$   ⇒   $f_0' = {\rm ggt}(1.0, \ 2.5) = 0.5$   ⇒   $T_0 = 2.0\ \rm ms$;

(d)   $f_1' = 0.9$,   $f_2' = 2.5$   ⇒   $f_0' = {\rm ggt}(0.9, \ 2.5) = 0.1$   ⇒   $T_0 = 10.0 \ \rm ms$;

(e)   $f_2' = \sqrt{2} \cdot f_1' $   ⇒   $f_0' = {\rm ggt}(f_1', \ f_2') \to 0$   ⇒   $T_0 \to \infty$  ⇒   Das Signal  $x(t)$  ist nicht periodisch.


$\text{Anmerkung:}$  Die Periodendauer könnte auch als  kleinstes gemeinsames Vielfaches  $\rm (kgV)$  entsprechend  $T_0 = {\rm kgV}(T_1, \ T_2)$  ermittelt werden:

(c)   $T_1 = 1.0\ \rm ms$,   $T_2 = 0.4\ \rm kHz$   ⇒   $T_0 = {\rm kgV}(1.0, \ 0.4) \ \rm ms = 2.0\ \rm ms$

Bei allen anderen Parameterwerten würde es aber zu numerischen Problemen kommen, zum Beispiel

(a)   $T_1 = 1.0\ \rm ms$ und $T_2 = 0.333\text{...} \ \rm ms$ besitzen aufgrund der begrenzten Darstellung reeller Zahlen kein kleinstes gemeinsames Vielfaches.

Versuchsdurchführung


  • Wählen Sie zunächst die Nummer  $(1,\ 2$, ... $)$  der zu bearbeitenden Aufgabe.  Die Nummer  $0$  entspricht „Reset”:  Einstellung wie beim Programmstart.
  • Eine Aufgabenbeschreibung wird angezeigt.  Parameterwerte sind angepasst.  Lösung nach Drücken von „Musterlösung”.
  • $A_1'$  und  $A_2'$  bezeichnen hier die auf  $1\ \rm V$  normierten Signalamplituden.  $ f_0'$,  $f_1'$  und  $f_2'$  sind die auf  $1\ \rm kHz$  normierten Frequenzen.


(1)   Es gelte  $A_1' = 1.0, \ A_2' = 0.5, \ f_1' = 2.0, \ f_2' = 2.5, \ \varphi_1 = 0^\circ \ \varphi_2 = 90^\circ\text{.}$  Wie groß ist die Periodendauer  $T_0$?

$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Die Periodendauer ist  $T_0 = 2.0 \ \rm ms$  wegen  ${\rm ggt}(2.0, 2.5) = 0.5$.

(2)   Variieren Sie  $\varphi_1$  und  $\varphi_2$  im gesamten möglichen Bereich $\pm 180^\circ\text{.}$  Wie wirkt sich dies auf die Periodendauer  $T_0$  aus?

$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Die Periodendauer  $T_0 = 2.0 \ \rm ms$  bleibt für alle  $\varphi_1$  und  $\varphi_2$  erhalten.

(3)   Wählen Sie die Voreinstellung   ⇒   „Recall Parameters”.  Variieren Sie  $A_1'$  im gesamten möglichen Bereich  $0 \le A_1' \le 1$.

$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Die Periodendauer  $T_0 = 2.0 \ \rm ms$  bleibt erhalten mit Ausnahme von  $A_1' =0$.  In letzerem Fall ist  $T_0 = 0.4 \ \rm ms$.

(4)   Wählen Sie die Voreinstellung   ⇒   „Recall Parameters” und variieren Sie  $f_2' $?  Hat dies Auswirkungen auf  $T_0$?  Welcher Wert ergibt sich für  $f_2' = 0.2$.

$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Die Periodendauer springt hin und her.  Für  $f_2' = 0.2$  ergibt sich  $T_0 = 5.0 \ \rm ms$   wegen   ${\rm ggt}(2.0, 0.2) = 0.2$.

(5)   Es gelte  $A_1' = 1.0, \ A_2' = 0.5, \ f_1' = 0.2, \ f_2' = 2.5, \ \varphi_1 = 0^\circ \ \varphi_2 = 90^\circ\text{.}$  Wie groß ist  $T_0$?  Speichern Sie diese Einstellung mit „Store Parameters”.

$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Die Periodendauer ist  $T_0 = 10.0 \ \rm ms$  wegen  ${\rm ggt}(0.2, 2.5) = 0.1$.

(6)   Wählen Sie die letzte Einstellung   ⇒   „Recall Parameters” und ändern Sie  $f_2' = 0.6$.  Speichern Sie diese Einstellung mit „Store Parameters”:

$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Die Periodendauer ist  $T_0 = 5.0 \ \rm ms$  wegen  ${\rm ggt}(0.2,0.6) = 0.2$.

(7)   Wie groß ist bei gleicher Einstellung der maximale Signalwert  $x_{\rm max}\text{?}$

$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$ $x_{\rm max} =x(t_* + i \cdot T_0) = 1.38 \ {\rm V} < A_1 + A_2$  mit  $t_* = 0.3 \ \rm ms$  und  $T_0 = 5.0 \ \rm ms$.

(8)   Welcher Unterschied ergibt sich mit  $\varphi_2 = 0^\circ \hspace{0.1cm}\Rightarrow\hspace{0.1cm}$ Summe zweier Cosinusschwingungen?

$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$ $t_* = 0$,  $T_0 = 5.0 \ \rm ms$  ⇒   $x_{\rm max} =x(t_* + i \cdot T_0) = 1.5 \ {\rm V}=A_1 + A_2$.

(9)   Nun gelte  $\varphi_1 = \varphi_2 = 90^\circ \hspace{0.1cm}\Rightarrow\hspace{0.1cm}$ Summe zweier Sinusschwingungen.  Wie groß ist hier der maximale Signalwert  $x_{\rm max}\text{?}$

$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Der maximale Signalwert ist nun  $x_{\rm max} = 1.07 \ {\rm V} < A_1 + A_2$. Dieser Wert ergibt sich mit  $T_0 = 5.0 \ \rm ms$  sowie  $t_* = 0.6 \ \rm ms$  bzw.  $t_* = 1.9 \ \rm ms$.


Zur Handhabung der Applet-Variante 1

Bildschirmabzug der englischen Version

    (A)     Parametereingabe für Schwingung 1

    (B)     Parametereingabe für Schwingung 2 und der Zeit  $t_*$.

    (C)     Numerikausgabe des Hauptergebnisses  $T_0$;  graphische Verdeutlichung durch rote Linie

    (D)     Abspeichern von Parametersätzen

    (E)     Zurückholen von Parametersätzen

    (F)     Ausgabe von  $x_{\rm max}$  und der Signalwerte  $x(t_*) = x(t_* + T_0)= x(t_* + 2T_0)$

    (G)     Grafikfeld zur Darstellung der Signale

                  Die Signalwerte  $x(t_*) = x(t_* + T_0)= x(t_* + 2T_0)$  werden durch grüne Punkte markiert

                  Am unteren rechten Grafikrand finden Sie folgende Buttos:

                  (1)     Zoom–Funktionen „$+$” (Vergrößern), „$-$” (Verkleinern) und $\rm o$ (Zurücksetzen)

                  (2)     Verschieben mit „$\leftarrow$” (Ausschnitt nach links, Ordinate nach rechts), „$\uparrow$” „$\downarrow$” und „$\rightarrow$”

    (H)     Aufgabenauswahl entsprechend der Aufgabennummer

In allen Applets oben rechts:    Veränderbare grafische Oberflächengestaltung   ⇒   Theme:

  • Dark:   schwarzer Hintergrund  (wird von den Autoren empfohlen)
  • Bright:   weißer Hintergrund  (empfohlen für Beamer und Ausdrucke)
  • Deuteranopia:   für Nutzer mit ausgeprägter Grün–Sehschwäche
  • Protanopia:   für Nutzer mit ausgeprägter Rot–Sehschwäche



Über die Autoren

Dieses interaktive Berechnungstool wurde am  Lehrstuhl für Nachrichtentechnik  der  Technischen Universität München  konzipiert und realisiert.

  • Die erste Version wurde 2004 von  Ji Li  im Rahmen ihrer Diplomarbeit mit „FlashMX–Actionscript” erstellt  (Betreuer:  Günter Söder ).
  • 2017 wurde dieses Programm von  David Jobst  im Rahmen seiner Ingenieurspraxis  (Betreuer:  Tasnád Kernetzky)  auf „HTML5” umgesetzt und neu gestaltet   ⇒   Applet-Variante 1.  Parallel dazu erarbeitete  Bastian Siebenwirth  im Rahmen seiner Bachelorarbeit  (Betreuer:  Günter Söder)  die HTML5-Variante 2.

Nochmalige Aufrufmöglichkeit der Applets in neuem Fenster

Wir bieten hier zwei Applets zur gleichen Thematik mit unterschiedlichem Layout an:

Applet-Variante 1 in neuem Tab öffnen     Applet-Variante 2 in neuem Tab öffnen