Applets:Sampling of Analog Signals and Signal Reconstruction: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
K (Textersetzung - „Biografien_und_Bibliografien/Beteiligte_der_Professur_Leitungsgebundene_%C3%9Cbertragungstechnik#Tasn.C3.A1d_Kernetzky.2C_M.Sc._.28bei_L.C3.9CT_seit_2014.29“ durch „Biografien_und_Bibliografien/An_LNTwww_beteiligte_LÜT-Angehörige#Dr.-Ing._Tasn.C3.A1d_Kernetzky_.28bei_L.C3.9CT_von_2014-2022.29“)
 
(7 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
{{LntAppletLink|augendiagramm}}
+
{{LntAppletLinkEn|sampling}}
 
   
 
   
 
== Applet Description==
 
== Applet Description==
Zeile 5: Zeile 5:
 
The applet deals with the system components  „sampling”  and  „signal reconstruction”, two components that are of great importance for understanding the  [[Modulationsverfahren/Pulscodemodulation|Pulscodemodulation]]  $({\rm PCM})$  for example.   The upper graphic shows the model on which this applet is based.  Below it are the samples  $x(\nu \cdot T_{\rm A})$  of the time continuous signal  $x(t)$. The (infinite) sum over all these samples is called the sampled signal  $x_{\rm A}(t)$.  
 
The applet deals with the system components  „sampling”  and  „signal reconstruction”, two components that are of great importance for understanding the  [[Modulationsverfahren/Pulscodemodulation|Pulscodemodulation]]  $({\rm PCM})$  for example.   The upper graphic shows the model on which this applet is based.  Below it are the samples  $x(\nu \cdot T_{\rm A})$  of the time continuous signal  $x(t)$. The (infinite) sum over all these samples is called the sampled signal  $x_{\rm A}(t)$.  
  
[[Datei:Abtastung_1_version4.png|center|frame|Top: &nbsp;&nbsp; Underlying model for sampling and signal reconstruction<br>Bottom: &nbsp; Example for time discretization of the time continuous signal&nbsp; $x(t)$]]
+
[[Datei:EN_Abtastung_1.png|center|frame|Top: &nbsp;&nbsp; Underlying model for sampling and signal reconstruction<br>Bottom: &nbsp; Example for time discretization of the continuous&ndash;time signal&nbsp; $x(t)$]]
  
*At the transmitter, the time discrete (sampled) signal&nbsp; $x_{\rm A}(t)$&nbsp; is obtained from the time continuous source signal&nbsp; $x(t)$&nbsp; $x_{\rm A}(t)$&nbsp; This process is called&nbsp; '''sampling'' &nbsp; or&nbsp; '''A/D conversion'''.   
+
*At the transmitter, the time discrete (sampled) signal&nbsp; $x_{\rm A}(t)$&nbsp; is obtained from the continuous&ndash;time signal&nbsp; $x(t)$.&nbsp; This process is called&nbsp; '''sampling''' &nbsp; or&nbsp; '''A/D conversion'''.   
*The corresponding program parameter for the transmitter is the sampling rate&nbsp; $f_{\rm A}= 1/T_{\rm A}$.&nbsp; The lower graphic shows the sampling rate&nbsp; $T_{\rm A}$&nbsp;.  
+
*The corresponding program parameter for the transmitter is the sampling rate&nbsp; $f_{\rm A}= 1/T_{\rm A}$.&nbsp; The lower graphic shows the sampling distance&nbsp; $T_{\rm A}$&nbsp;.  
 
*In the receiver, the discrete-time received signal&nbsp; $y_{\rm A}(t)$&nbsp; is used to generate the continuous-time sink signal&nbsp; $y(t)$&nbsp; &nbsp; &rArr; &nbsp; '''signal reconstruction'''&nbsp; or&nbsp; '''D/A conversion'''&nbsp; corresponding to the receiver frequency response&nbsp; $H_{\rm E}(f)$.  
 
*In the receiver, the discrete-time received signal&nbsp; $y_{\rm A}(t)$&nbsp; is used to generate the continuous-time sink signal&nbsp; $y(t)$&nbsp; &nbsp; &rArr; &nbsp; '''signal reconstruction'''&nbsp; or&nbsp; '''D/A conversion'''&nbsp; corresponding to the receiver frequency response&nbsp; $H_{\rm E}(f)$.  
  
  
The applet does not consider the PCM blocks&nbsp; &bdquo;Quantization&rdquo;, &nbsp;&bdquo;encoding/decoding&rdquo;. &nbsp; The digital transmission channel is assumed to be ideal.&nbsp;  
+
The applet does not consider the PCM blocks&nbsp; &bdquo;Quantization&rdquo;and &nbsp;&bdquo;encoding/decoding&rdquo;. &nbsp; The digital transmission channel is assumed to be ideal.&nbsp;  
 +
 
 +
[[Datei:Abtastung_2_neu.png|right|frame|Receiver frequency response&nbsp; $H_{\rm E}(f)$]]
  
 
The following consequences result from this:
 
The following consequences result from this:
Zeile 18: Zeile 20:
 
* With suitable system parameters, the error signal &nbsp; $\varepsilon(t) = y(t)-x(t)\equiv 0$&nbsp; is therefore also possible.  
 
* With suitable system parameters, the error signal &nbsp; $\varepsilon(t) = y(t)-x(t)\equiv 0$&nbsp; is therefore also possible.  
  
[[Datei:Abtastung_2_neu.png|right|frame|Receiver frequency response&nbsp; $H_{\rm E}(f)$]]
+
 
<br>
 
 
The sampling theorem and the signal reconstruction can be better explained in the frequency domain.&nbsp; Therefore all spectral functions are displayed in the program;
 
The sampling theorem and the signal reconstruction can be better explained in the frequency domain.&nbsp; Therefore all spectral functions are displayed in the program;
  
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;$X(f)\ \bullet\!\!\!\!\!\!\!\!\!\circ\,\ x(t)$,&nbsp; $X_{\rm A}(f)\ \bullet\!\!\!\!\!\!\!\!\! \circ\,\ x_{\rm A}(t)$,&nbsp; $Y(f)\ \bullet\!\!\!\!\!\!\!\!\!\!\circ\,\ y(t)$,&nbsp; $E(f)\ \bullet\!\!-\!\!\!\!\!\!\!\!\!\circ\,\ \varepsilon(t).$&nbsp;
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;$X(f)\ \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\,\ x(t)$,&nbsp; $X_{\rm A}(f)\ \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\,\ x_{\rm A}(t)$,&nbsp; $Y(f)\ \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\,\ y(t)$,&nbsp; $E(f)\ \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\,\ \varepsilon(t).$&nbsp;
  
 
Parameters for the receiver frequency response&nbsp; $H_{\rm E}(f)$&nbsp; are the cut&ndash;off frequency and the rolloff factor&nbsp; (see lower graph):
 
Parameters for the receiver frequency response&nbsp; $H_{\rm E}(f)$&nbsp; are the cut&ndash;off frequency and the rolloff factor&nbsp; (see lower graph):
$$f_{\rm G} = \frac{f_2 +f_1}{2},\hspace{1cm}r = \frac{f_2 -f_1}{f_2 +f_1}.$$
+
:$$f_{\rm G} = \frac{f_2 +f_1}{2},\hspace{1cm}r = \frac{f_2 -f_1}{f_2 +f_1}.$$
  
 
''Notes:''
 
''Notes:''
  
'''(1)''' &nbsp; All signal values are normalized to&nbsp; $\pm 1$&nbsp; to be understood.&nbsp
+
'''(1)''' &nbsp; All signal values are normalized to&nbsp; $\pm 1$.  
  
'''(2)''' &nbsp; For the services issued, the respective period duration&nbsp; $T_0$ applies:
+
'''(2)''' &nbsp; The power calculation is done by integration over the respective period duration&nbsp; $T_0$:
 
:$$P_x = \frac{1}{T_0} \cdot \int_0^{T_0} x^2(t)\ {\rm d}t,\hspace{0.8cm}P_\varepsilon = \frac{1}{T_0} \cdot \int_0^{T_0} \varepsilon^2(t).$$
 
:$$P_x = \frac{1}{T_0} \cdot \int_0^{T_0} x^2(t)\ {\rm d}t,\hspace{0.8cm}P_\varepsilon = \frac{1}{T_0} \cdot \int_0^{T_0} \varepsilon^2(t).$$
  
 
'''(3)''' &nbsp; The <u>signal power</u>&nbsp; $P_x$&nbsp; and the <u>distortion power</u>&nbsp; $P_\varepsilon$&nbsp; are also output in normalized form, which implicitly assumes the reference resistance&nbsp; $R = 1\, \rm \Omega$&nbsp;;
 
'''(3)''' &nbsp; The <u>signal power</u>&nbsp; $P_x$&nbsp; and the <u>distortion power</u>&nbsp; $P_\varepsilon$&nbsp; are also output in normalized form, which implicitly assumes the reference resistance&nbsp; $R = 1\, \rm \Omega$&nbsp;;
  
'''(4)''' &nbsp; From this the <u>signal&ndash;distortion&ndash;distance</u>&nbsp; $10 \cdot \lg \ (P_x/P_\varepsilon)$&nbsp; can be calculated.
+
'''(4)''' &nbsp; From these the <u>signal&ndash;distortion&ndash;distance</u>&nbsp; $10 \cdot \lg \ (P_x/P_\varepsilon)$&nbsp; can be calculated.
 
   
 
   
'''(5)''' &nbsp; Does the spectral function&nbsp; $X(f)$&nbsp; for positive frequencies, consists of&nbsp; $I$&nbsp; Diraclines with the (possibly complex) weights&nbsp; $X_1$, ... , $X_I$, <br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;so applies to the transmission power taking into account the mirror-image lines at the negative frequencies:
+
'''(5)''' &nbsp; Does the spectral function&nbsp; $X(f)$&nbsp; for positive frequencies consists of&nbsp; $I$&nbsp; Diraclines with the (possibly complex) weights&nbsp; $X_1$, ... , $X_I$,<br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; so applies to the transmission power taking into account the mirror-image lines at the negative frequencies:
  
 
:$$P_x = 2 \cdot \sum_{i=1}^I |X_k|^2.$$
 
:$$P_x = 2 \cdot \sum_{i=1}^I |X_k|^2.$$
  
'''(6)''' &nbsp; Correspondingly, the following applies to the distortion power if the spectral function&nbsp; $E(f)$&nbsp; in the range&nbsp; $f>0$&nbsp; off&nbsp; $J$&nbsp; Diraclines with weights&nbsp; $E_1$, ... , $E_J$&nbsp; composed:  
+
'''(6)''' &nbsp; Correspondingly, the following applies to the distortion power if the spectral function&nbsp; $E(f)$&nbsp; in the range&nbsp; $f>0$&nbsp; has&nbsp; $J$&nbsp; Diraclines with weights&nbsp; $E_1$, ... , $E_J$:  
  
 
:$$P_\varepsilon = 2 \cdot \sum_{j=1}^J |E_j|^2.$$   
 
:$$P_\varepsilon = 2 \cdot \sum_{j=1}^J |E_j|^2.$$   
 
 
 
Translated with www.DeepL.com/Translator (free version)
 
 
  
 
   
 
   
Zeile 55: Zeile 51:
  
  
===Beschreibung der Abtastung im Zeitbereich===
+
===Description of sampling in the time domain===
  
 
[[Datei:P_ID1120__Sig_T_5_1_S1_neu.png|center|frame|Zur Zeitdiskretisierung des zeitkontinuierlichen Signals&nbsp; $x(t)$]]
 
[[Datei:P_ID1120__Sig_T_5_1_S1_neu.png|center|frame|Zur Zeitdiskretisierung des zeitkontinuierlichen Signals&nbsp; $x(t)$]]
Zeile 70: Zeile 66:
 
Die Konstante hängt von der Art der Zeitdiskretisierung ab. Für die obige Skizze gilt&nbsp; $K = 1$.
 
Die Konstante hängt von der Art der Zeitdiskretisierung ab. Für die obige Skizze gilt&nbsp; $K = 1$.
 
<br><br>
 
<br><br>
===Beschreibung der Abtastung mit Diracpuls===
+
===Description of sampling with Dirac pulse (Ist das richtig?)===
  
 
Im Folgenden gehen wir von einer geringfügig anderen Beschreibungsform aus.&nbsp; Die folgenden Seiten werden zeigen, dass diese gewöhnungsbedürftigen Gleichungen durchaus zu sinnvollen Ergebnissen führen, wenn man sie konsequent  anwendet.
 
Im Folgenden gehen wir von einer geringfügig anderen Beschreibungsform aus.&nbsp; Die folgenden Seiten werden zeigen, dass diese gewöhnungsbedürftigen Gleichungen durchaus zu sinnvollen Ergebnissen führen, wenn man sie konsequent  anwendet.
Zeile 100: Zeile 96:
  
  
===Beschreibung der Abtastung im Frequenzbereich===
+
===Description of sampling in the frequency domain===
  
 
Zum Spektrum des abgetasteten Signals&nbsp; $x_{\rm A}(t)$&nbsp; kommt man durch Anwendung des&nbsp; [[Signaldarstellung/Faltungssatz_und_Faltungsoperation#Faltung_im_Frequenzbereich|Faltungssatzes]]. Dieser besagt, dass der Multiplikation im Zeitbereich die Faltung im Spektralbereich entspricht:
 
Zum Spektrum des abgetasteten Signals&nbsp; $x_{\rm A}(t)$&nbsp; kommt man durch Anwendung des&nbsp; [[Signaldarstellung/Faltungssatz_und_Faltungsoperation#Faltung_im_Frequenzbereich|Faltungssatzes]]. Dieser besagt, dass der Multiplikation im Zeitbereich die Faltung im Spektralbereich entspricht:
Zeile 150: Zeile 146:
  
  
===Signalrekonstruktion===
+
===Signal reconstruction===
  
 
[[Datei:P_ID1123__Sig_T_5_1_S5a_neu.png|right|frame|Gemeinsames Modell von &bdquo;Signalabtastung&rdquo; und &bdquo;Signalrekonstruktion&rdquo;]]
 
[[Datei:P_ID1123__Sig_T_5_1_S5a_neu.png|right|frame|Gemeinsames Modell von &bdquo;Signalabtastung&rdquo; und &bdquo;Signalrekonstruktion&rdquo;]]
Zeile 175: Zeile 171:
  
  
===Das Abtasttheorem===
+
===The Sampling Theorem===
  
 
Die vollständige Rekonstruktion des Analogsignals&nbsp; $y(t)$&nbsp; aus dem abgetasteten Signal&nbsp; $y_{\rm A}(t) = x_{\rm A}(t)$&nbsp; ist nur möglich, wenn die Abtastrate&nbsp; $f_{\rm A}$&nbsp; entsprechend der Bandbreite&nbsp; $B_{\rm NF}$&nbsp; des Nachrichtensignals richtig gewählt wurde.  
 
Die vollständige Rekonstruktion des Analogsignals&nbsp; $y(t)$&nbsp; aus dem abgetasteten Signal&nbsp; $y_{\rm A}(t) = x_{\rm A}(t)$&nbsp; ist nur möglich, wenn die Abtastrate&nbsp; $f_{\rm A}$&nbsp; entsprechend der Bandbreite&nbsp; $B_{\rm NF}$&nbsp; des Nachrichtensignals richtig gewählt wurde.  
Zeile 216: Zeile 212:
 
*Solution after pressing &bdquo;sample solution&rdquo;.
 
*Solution after pressing &bdquo;sample solution&rdquo;.
 
*The number&nbsp; '''0'''&nbsp; corresponds to a &bdquo;Reset&rdquo;:&nbsp; Same setting as at program start.
 
*The number&nbsp; '''0'''&nbsp; corresponds to a &bdquo;Reset&rdquo;:&nbsp; Same setting as at program start.
*All signal values are normalized to&nbsp; $\pm 1$&nbsp; to be understood.&nbsp; Also the output powers are normalized values.   
+
*All signal values are normalized to&nbsp; $\pm 1$&nbsp; to be understood.&nbsp; Powers are normalized values, too.   
  
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(1)'''&nbsp; For the source signal,&nbsp; $x(t) = A \cdot \cos (2\pi \cdot f_0 \cdot t -\varphi)$&nbsp; with&nbsp; $f_0 = \text{4 kHz}$. &nbsp; sampling with&nbsp; $f_{\rm A} = \text{10 kHz}$.&nbsp; rectangle&ndash;low-pass;&nbsp; cut-off frequency:&nbsp; $f_{\rm G} = \text{5 kHz}$. <br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; Interpret the output graphics and evaluate the present signal reconstruction for all permitted parameter values of&nbsp;$A$&nbsp; and&nbsp;$\varphi$. }}
+
'''(1)'''&nbsp; Source signal:&nbsp; $x(t) = A \cdot \cos (2\pi \cdot f_0 \cdot t -\varphi)$&nbsp; with&nbsp; $f_0 = \text{4 kHz}$. &nbsp; Sampling with&nbsp; $f_{\rm A} = \text{10 kHz}$.&nbsp; Rectanglular low pass;&nbsp; cut-off frequency:&nbsp; $f_{\rm G} = \text{5 kHz}$. <br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; Interpret the shown graphics and evaluate the present signal reconstruction for all permitted parameter values of&nbsp;$A$&nbsp; and&nbsp;$\varphi$. }}
  
*&nbsp;The spectrum&nbsp; $X(f)$&nbsp; consists of two diraclines at&nbsp; $\pm \text{4 kHz}$, each with pulse weight &nbsp;$0.5$.  
+
*&nbsp;The spectrum&nbsp; $X(f)$&nbsp; consists of two dirac functions at&nbsp; $\pm \text{4 kHz}$, each with pulse weight &nbsp;$0.5$.  
*&nbsp;By the periodic continuation has&nbsp; $X_{\rm A}(f)$&nbsp; lines of equal height at&nbsp; $\pm \text{4 kHz}$,&nbsp; $\pm \text{6 kHz}$,&nbsp; $\pm \text{14 kHz}$,&nbsp; $\pm \text{16 kHz}$,&nbsp; $\pm \text{24 kHz}$,&nbsp; $\pm \text{26 kHz}$,&nbsp; etc.
+
*&nbsp;By the periodic continuation&nbsp; $X_{\rm A}(f)$&nbsp; has lines of equal height at&nbsp; $\pm \text{4 kHz}$,&nbsp; $\pm \text{6 kHz}$,&nbsp; $\pm \text{14 kHz}$,&nbsp; $\pm \text{16 kHz}$,&nbsp; $\pm \text{24 kHz}$,&nbsp; $\pm \text{26 kHz}$,&nbsp; etc.
*&nbsp;The rectangle&ndash;Lowpass with the cutoff frequency&nbsp; $f_{\rm G} = \text{5 kHz}$&nbsp; removes all lines except the two at&nbsp; $\pm \text{4 kHz}$&nbsp; &rArr; &nbsp;$Y(f) =X(f)$&nbsp; &rArr; &nbsp;$y(t) =x(t)$&nbsp; &rArr; &nbsp; $P_\varepsilon = 0$.
+
*&nbsp;The rectanglular low pass with the cut-off frequency&nbsp; $f_{\rm G} = \text{5 kHz}$&nbsp; removes all lines except the two at&nbsp; $\pm \text{4 kHz}$&nbsp; &rArr; &nbsp;$Y(f) =X(f)$&nbsp; &rArr; &nbsp;$y(t) =x(t)$&nbsp; &rArr; &nbsp; $P_\varepsilon = 0$.
 
*&nbsp;The signal reconstruction works perfectly here&nbsp; $(P_\varepsilon = 0)$&nbsp; for all amplitudes&nbsp;$A$&nbsp; and any phases&nbsp;$\varphi$.
 
*&nbsp;The signal reconstruction works perfectly here&nbsp; $(P_\varepsilon = 0)$&nbsp; for all amplitudes&nbsp;$A$&nbsp; and any phases&nbsp;$\varphi$.
  
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(2)'''&nbsp; Es gelte weiter&nbsp; $A=1$,&nbsp; $f_0 = \text{4 kHz}$,&nbsp; $\varphi=0$,&nbsp; $f_{\rm A} = \text{10 kHz}$,&nbsp; $f_{\rm G} = \text{5 kHz}$.&nbsp; Welchen Einfluss haben hier die Rolloff&ndash;Faktoren&nbsp; $r=0.2$,&nbsp; $r=0.5$&nbsp; und &nbsp; $r=1$?  <br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; Geben Sie die jeweiligen Leistungen&nbsp; $P_x$&nbsp; und&nbsp; $P_\varepsilon$&nbsp; an.&nbsp; für welche&nbsp; $r$&ndash;Werte ist&nbsp; $P_\varepsilon= 0$?&nbsp; Gelten diese Ergebnisse auch für andere&nbsp; $A$&nbsp; und&nbsp; $\varphi$?  }}
+
'''(2)'''&nbsp; Continue with&nbsp; $A=1$,&nbsp; $f_0 = \text{4 kHz}$,&nbsp; $\varphi=0$,&nbsp; $f_{\rm A} = \text{10 kHz}$,&nbsp; $f_{\rm G} = \text{5 kHz}$. &nbsp; Which results do the rolloff&ndash;factors&nbsp; $r=0.2$,&nbsp; $r=0.5$&nbsp; and &nbsp; $r=1$ provide?  <br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; Specify the power values&nbsp; $P_x$&nbsp; and&nbsp; $P_\varepsilon$&nbsp;. &nbsp; For which&nbsp; $r$&ndash;values is&nbsp; $P_\varepsilon= 0$?&nbsp; Do these results also apply to other&nbsp; $A$&nbsp; and&nbsp; $\varphi$?  }}
  
:*&nbsp;Die Signalleistung ist mit&nbsp; $|X_1|=0.5$&nbsp; gleich&nbsp; $P_x = 2\cdot 0.5^2 = 0.5$.&nbsp; Die Verzerrungsleistung&nbsp; $P_\varepsilon$&nbsp; hängt signifikant vom Rolloff&ndash;Faktor&nbsp; $r$&nbsp; ab.
+
:*&nbsp;With&nbsp; $|X_1|=0.5$&nbsp; the signal power is&nbsp; $P_x = 2\cdot 0.5^2 = 0.5$.&nbsp; The distortion power&nbsp; $P_\varepsilon$&nbsp; depends significantly on the rolloff&ndash;factor&nbsp; $r$&nbsp;.
:*&nbsp;Für&nbsp; $r \le 0.2$&nbsp; ist&nbsp; $P_\varepsilon=0$.&nbsp; Die&nbsp; $X_{\rm A}(f)$&ndash;Linie bei&nbsp; $f_0 = \text{4 kHz}$&nbsp; wird durch den Tiefpass nicht verändert und die unerwünschte&nbsp; Linie bei&nbsp; $\text{6 kHz}$&nbsp; voll unterdrückt.
+
:*&nbsp;$P_\varepsilon$&nbsp; is zero for&nbsp; $r \le 0.2$.&nbsp; The&nbsp; $X_{\rm A}(f)$ line at&nbsp; $f_0 = \text{4 kHz}$&nbsp; is not changed by the low pass and the unwanted&nbsp; line at&nbsp; $\text{6 kHz}$&nbsp; is fully suppressed.
:*&nbsp;$r = 0.5$&nbsp;:&nbsp; $Y(f = \text{4 kHz}) = 0.35$,&nbsp; $Y(f = \text{6 kHz}) = 0.15$&nbsp; &rArr; &nbsp; $|E(f = \text{4 kHz})| = |E(f = \text{6 kHz})|= 0.15$&nbsp; &rArr; &nbsp;$P_\varepsilon = 0.09$&nbsp; &rArr; &nbsp;$10 \cdot \lg \ (P_x/P_\varepsilon)=7.45\ \rm dB$.
+
:*&nbsp;$r = 0.5$&nbsp;:&nbsp; $Y(f = \text{4 kHz}) = 0.35$,&nbsp; $Y(f = \text{6 kHz}) = 0.15$&nbsp; &rArr; &nbsp; $|E(f = \text{4 kHz})| = |E(f = \text{6 kHz})|= 0. 15$&nbsp; &rArr; &nbsp;$P_\varepsilon = 0.09$&nbsp; &rArr; &nbsp;$10 \cdot \lg \ (P_x/P_\varepsilon)=7.45\ \rm dB$.
:*$r = 1.0$&nbsp;:&nbsp; $Y(f = \text{4 kHz}) = 0.3$,&nbsp; $Y(f = \text{6 kHz}) = 0.2$&nbsp; &rArr; &nbsp; $|E(f = \text{4 kHz})| = |E(f = \text{6 kHz})|= 0.2$&nbsp; &rArr; &nbsp;$P_\varepsilon = 0.16$&nbsp; &rArr; &nbsp;$10 \cdot \lg \ (P_x/P_\varepsilon)=4.95\ \rm dB$.
+
:*$r = 1.0$&nbsp;:&nbsp; $Y(f = \text{4 kHz}) = 0.3$,&nbsp; $Y(f = \text{6 kHz}) = 0.2$&nbsp; &rArr; &nbsp; $|E(f = \text{4 kHz})| = |E(f = \text{6 kHz})|= 0. 2$&nbsp; &rArr; &nbsp;$P_\varepsilon = 0.16$&nbsp; &rArr; &nbsp;$10 \cdot \lg \ (P_x/P_\varepsilon)=4.95\ \rm dB$.
:*&nbsp;Für alle&nbsp; $r$&nbsp; ist&nbsp; $P_\varepsilon$&nbsp; unabhängig von&nbsp; $\varphi$.&nbsp; Die Amplitude&nbsp; $A$&nbsp; beeinflusst&nbsp; $P_x$&nbsp; und&nbsp; $P_\varepsilon$&nbsp; in gleicher Weise &nbsp; &rArr; &nbsp; der Quotient ist jeweils unabhängig von&nbsp; $A$.
+
:*&nbsp;For all&nbsp; $r$&nbsp; the distortion power  $P_\varepsilon$&nbsp; is independent of&nbsp; $\varphi$. &nbsp; The amplitude&nbsp; $A$&nbsp; affects&nbsp; $P_x$&nbsp; and&nbsp; $P_\varepsilon$&nbsp; in the same way &nbsp; &rArr; &nbsp; the quotient is independent of&nbsp; $A$.
 
      
 
      
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
Zeile 332: Zeile 328:
 
Dieses interaktive Berechnungstool  wurde am&nbsp; [http://www.lnt.ei.tum.de/startseite Lehrstuhl für Nachrichtentechnik]&nbsp; der&nbsp; [https://www.tum.de/ Technischen Universität München]&nbsp; konzipiert und realisiert.  
 
Dieses interaktive Berechnungstool  wurde am&nbsp; [http://www.lnt.ei.tum.de/startseite Lehrstuhl für Nachrichtentechnik]&nbsp; der&nbsp; [https://www.tum.de/ Technischen Universität München]&nbsp; konzipiert und realisiert.  
 
*Die erste Version wurde 2008 von&nbsp; [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Slim_Lamine_.28Studienarbeit_EI_2006.29|Slim Lamine]]&nbsp; im Rahmen einer Werkstudententätigkeit mit &bdquo;FlashMX&ndash;Actionscript&rdquo; erstellt (Betreuer:&nbsp; [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]]).  
 
*Die erste Version wurde 2008 von&nbsp; [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Slim_Lamine_.28Studienarbeit_EI_2006.29|Slim Lamine]]&nbsp; im Rahmen einer Werkstudententätigkeit mit &bdquo;FlashMX&ndash;Actionscript&rdquo; erstellt (Betreuer:&nbsp; [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]]).  
* 2020 wurde das Programm  von&nbsp; [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Carolin_Mirschina_.28Ingenieurspraxis_Math_2019.2C_danach_Werkstudentin.29|Carolin Mirschina]]&nbsp; im Rahmen einer Werkstudententätigkeit auf  &bdquo;HTML5&rdquo; umgesetzt und neu gestaltet (Betreuer:&nbsp; [[Biografien_und_Bibliografien/Beteiligte_der_Professur_Leitungsgebundene_%C3%9Cbertragungstechnik#Tasn.C3.A1d_Kernetzky.2C_M.Sc._.28bei_L.C3.9CT_seit_2014.29|Tasnád Kernetzky]]).
+
* 2020 wurde das Programm  von&nbsp; [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Carolin_Mirschina_.28Ingenieurspraxis_Math_2019.2C_danach_Werkstudentin.29|Carolin Mirschina]]&nbsp; im Rahmen einer Werkstudententätigkeit auf  &bdquo;HTML5&rdquo; umgesetzt und neu gestaltet (Betreuer:&nbsp; [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_LÜT-Angehörige#Dr.-Ing._Tasn.C3.A1d_Kernetzky_.28bei_L.C3.9CT_von_2014-2022.29|Tasnád Kernetzky]]).
  
  
 
Die Umsetzung dieses Applets auf HTML 5 wurde durch&nbsp; [https://www.ei.tum.de/studium/studienzuschuesse/ Studienzuschüsse]&nbsp; der Fakultät EI der TU München finanziell unterstützt. Wir bedanken uns.
 
Die Umsetzung dieses Applets auf HTML 5 wurde durch&nbsp; [https://www.ei.tum.de/studium/studienzuschuesse/ Studienzuschüsse]&nbsp; der Fakultät EI der TU München finanziell unterstützt. Wir bedanken uns.
 +
 +
Translated with www.DeepL.com/Translator (free version)
  
  
 
==Once again:&nbsp; Open Applet in new Tab==
 
==Once again:&nbsp; Open Applet in new Tab==
  
{{LntAppletLink|augendiagramm}}
+
{{LntAppletLinkEn|sampling}}

Aktuelle Version vom 26. Oktober 2023, 11:15 Uhr

Open Applet in new Tab

Applet Description


The applet deals with the system components  „sampling”  and  „signal reconstruction”, two components that are of great importance for understanding the  Pulscodemodulation  $({\rm PCM})$  for example.   The upper graphic shows the model on which this applet is based.  Below it are the samples  $x(\nu \cdot T_{\rm A})$  of the time continuous signal  $x(t)$. The (infinite) sum over all these samples is called the sampled signal  $x_{\rm A}(t)$.

Top:    Underlying model for sampling and signal reconstruction
Bottom:   Example for time discretization of the continuous–time signal  $x(t)$
  • At the transmitter, the time discrete (sampled) signal  $x_{\rm A}(t)$  is obtained from the continuous–time signal  $x(t)$.  This process is called  sampling   or  A/D conversion.
  • The corresponding program parameter for the transmitter is the sampling rate  $f_{\rm A}= 1/T_{\rm A}$.  The lower graphic shows the sampling distance  $T_{\rm A}$ .
  • In the receiver, the discrete-time received signal  $y_{\rm A}(t)$  is used to generate the continuous-time sink signal  $y(t)$    ⇒   signal reconstruction  or  D/A conversion  corresponding to the receiver frequency response  $H_{\rm E}(f)$.


The applet does not consider the PCM blocks  „Quantization”and  „encoding/decoding”.   The digital transmission channel is assumed to be ideal. 

Receiver frequency response  $H_{\rm E}(f)$

The following consequences result from this:

  • In the program simplifying  $y_{\rm A}(t) = x_{\rm A}(t)$  is set.
  • With suitable system parameters, the error signal   $\varepsilon(t) = y(t)-x(t)\equiv 0$  is therefore also possible.


The sampling theorem and the signal reconstruction can be better explained in the frequency domain.  Therefore all spectral functions are displayed in the program;

             $X(f)\ \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\,\ x(t)$,  $X_{\rm A}(f)\ \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\,\ x_{\rm A}(t)$,  $Y(f)\ \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\,\ y(t)$,  $E(f)\ \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\,\ \varepsilon(t).$ 

Parameters for the receiver frequency response  $H_{\rm E}(f)$  are the cut–off frequency and the rolloff factor  (see lower graph):

$$f_{\rm G} = \frac{f_2 +f_1}{2},\hspace{1cm}r = \frac{f_2 -f_1}{f_2 +f_1}.$$

Notes:

(1)   All signal values are normalized to  $\pm 1$.

(2)   The power calculation is done by integration over the respective period duration  $T_0$:

$$P_x = \frac{1}{T_0} \cdot \int_0^{T_0} x^2(t)\ {\rm d}t,\hspace{0.8cm}P_\varepsilon = \frac{1}{T_0} \cdot \int_0^{T_0} \varepsilon^2(t).$$

(3)   The signal power  $P_x$  and the distortion power  $P_\varepsilon$  are also output in normalized form, which implicitly assumes the reference resistance  $R = 1\, \rm \Omega$ ;

(4)   From these the signal–distortion–distance  $10 \cdot \lg \ (P_x/P_\varepsilon)$  can be calculated.

(5)   Does the spectral function  $X(f)$  for positive frequencies consists of  $I$  Diraclines with the (possibly complex) weights  $X_1$, ... , $X_I$,
          so applies to the transmission power taking into account the mirror-image lines at the negative frequencies:

$$P_x = 2 \cdot \sum_{i=1}^I |X_k|^2.$$

(6)   Correspondingly, the following applies to the distortion power if the spectral function  $E(f)$  in the range  $f>0$  has  $J$  Diraclines with weights  $E_1$, ... , $E_J$:

$$P_\varepsilon = 2 \cdot \sum_{j=1}^J |E_j|^2.$$


Theoretical Background

Description of sampling in the time domain

Zur Zeitdiskretisierung des zeitkontinuierlichen Signals  $x(t)$

Im Folgenden verwenden wir für die Beschreibung der Abtastung folgende Nomenklatur:

  • Das zeitkontinuierliche Signal sei  $x(t)$.
  • Das in äquidistanten Abständen  $T_{\rm A}$  abgetastete zeitdiskretisierte Signal sei  $x_{\rm A}(t)$.
  • Außerhalb der Abtastzeitpunkte  $\nu \cdot T_{\rm A}$  gilt stets  $x_{\rm A}(t) \equiv 0$.
  • Die Laufvariable  $\nu$  sei  ganzzahlig:     $\nu \in \mathbb{Z} = \{\hspace{0.05cm} \text{...}\hspace{0.05cm} , –3, –2, –1, \hspace{0.2cm}0, +1, +2, +3, \text{...} \hspace{0.05cm}\} $.
  • Dagegen ergibt sich zu den äquidistanten Abtastzeitpunkten mit der Konstanten  $K$:
$$x_{\rm A}(\nu \cdot T_{\rm A}) = K \cdot x(\nu \cdot T_{\rm A})\hspace{0.05cm}.$$

Die Konstante hängt von der Art der Zeitdiskretisierung ab. Für die obige Skizze gilt  $K = 1$.

Description of sampling with Dirac pulse (Ist das richtig?)

Im Folgenden gehen wir von einer geringfügig anderen Beschreibungsform aus.  Die folgenden Seiten werden zeigen, dass diese gewöhnungsbedürftigen Gleichungen durchaus zu sinnvollen Ergebnissen führen, wenn man sie konsequent anwendet.

$\text{Definitionen:}$ 

  • Unter  Abtastung  verstehen wir hier die Multiplikation des zeitkontinuierlichen Signals  $x(t)$  mit einem  Diracpuls:
$$x_{\rm A}(t) = x(t) \cdot p_{\delta}(t)\hspace{0.05cm}.$$
  • Der  Diracpuls (im Zeitbereich)  besteht aus unendlich vielen Diracimpulsen, jeweils im gleichen Abstand  $T_{\rm A}$  und alle mit gleichem Impulsgewicht  $T_{\rm A}$:
$$p_{\delta}(t) = \sum_{\nu = - \infty }^{+\infty} T_{\rm A} \cdot \delta(t- \nu \cdot T_{\rm A} )\hspace{0.05cm}.$$


Aufgrund dieser Definition ergeben sich für das abgetastete Signal folgende Eigenschaften:

$$x_{\rm A}(t) = \sum_{\nu = - \infty }^{+\infty} T_{\rm A} \cdot x(\nu \cdot T_{\rm A})\cdot \delta (t- \nu \cdot T_{\rm A} )\hspace{0.05cm}.$$
  • Das abgetastete Signal zum betrachteten Zeitpunkt  $(\nu \cdot T_{\rm A})$  ist gleich  $T_{\rm A} \cdot x(\nu \cdot T_{\rm A}) · \delta (0)$.
  • Da  $\delta (t)$  zur Zeit  $t = 0$  unendlich ist, sind eigentlich alle Signalwerte  $x_{\rm A}(\nu \cdot T_{\rm A})$  ebenfalls unendlich groß und auch der oben eingeführte Faktor  $K$.
  • Zwei Abtastwerte  $x_{\rm A}(\nu_1 \cdot T_{\rm A})$  und  $x_{\rm A}(\nu_2 \cdot T_{\rm A})$  unterscheiden sich jedoch im gleichen Verhältnis wie die Signalwerte  $x(\nu_1 \cdot T_{\rm A})$  und  $x(\nu_2 \cdot T_{\rm A})$.
  • Die Abtastwerte von  $x(t)$  erscheinen in den Impulsgewichten der Diracfunktionen:
  • Die zusätzliche Multiplikation mit  $T_{\rm A}$  ist erforderlich, damit  $x(t)$  und  $x_{\rm A}(t)$  gleiche Einheit besitzen.  Beachten Sie hierbei, dass  $\delta (t)$  selbst die Einheit „1/s” aufweist.


Description of sampling in the frequency domain

Zum Spektrum des abgetasteten Signals  $x_{\rm A}(t)$  kommt man durch Anwendung des  Faltungssatzes. Dieser besagt, dass der Multiplikation im Zeitbereich die Faltung im Spektralbereich entspricht:

$$x_{\rm A}(t) = x(t) \cdot p_{\delta}(t)\hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} X_{\rm A}(f) = X(f) \star P_{\delta}(f)\hspace{0.05cm}.$$

Entwickelt man den  Diracpuls  $p_{\delta}(t)$   (im Zeitbereich)   in eine  Fourierreihe  und transformiert diese unter Anwendung des  Verschiebungssatzes  in den Frequenzbereich, so ergibt sich mit dem Abstand  $f_{\rm A} = 1/T_{\rm A}$  zweier benachbarter Diraclinien im Frequenzbereich folgende Korrespondenz   ⇒   Beweis:

$$p_{\delta}(t) = \sum_{\nu = - \infty }^{+\infty} T_{\rm A} \cdot \delta(t- \nu \cdot T_{\rm A} )\hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} P_{\delta}(f) = \sum_{\mu = - \infty }^{+\infty} \delta (f- \mu \cdot f_{\rm A} ).$$
Diracpuls im Zeit- und Frequenzbereich mit  $T_{\rm A} = 50\ {\rm µs}$  und  $f_{\rm A} = 1/T_{\rm A} = 20\ \text{kHz}$

Das Ergebnis besagt:

  • Der Diracpuls  $p_{\delta}(t)$  im Zeitbereich besteht aus unendlich vielen Diracimpulsen, jeweils im gleichen Abstand  $T_{\rm A}$  und alle mit gleichem Impulsgewicht  $T_{\rm A}$.
  • Die Fouriertransformierte von  $p_{\delta}(t)$  ergibt wiederum einen Diracpuls, aber nun im Frequenzbereich   ⇒   $P_{\delta}(f)$.
  • Auch  $P_{\delta}(f)$  besteht aus unendlich vielen Diracimpulsen, nun im jeweiligen Abstand  $f_{\rm A} = 1/T_{\rm A}$  und alle mit dem Impulsgewicht  $1$.
  • Die Abstände der Diraclinien in Zeit– und Frequenzbereich folgen demnach dem  Reziprozitätsgesetz:   $T_{\rm A} \cdot f_{\rm A} = 1 \hspace{0.05cm}.$


Daraus folgt:   Aus dem Spektrum  $X(f)$  wird durch Faltung mit der um  $\mu \cdot f_{\rm A}$  verschobenen Diraclinie:

$$X(f) \star \delta (f- \mu \cdot f_{\rm A} )= X (f- \mu \cdot f_{\rm A} )\hspace{0.05cm}.$$

Wendet man dieses Ergebnis auf alle Diraclinien des Diracpulses an, so erhält man schließlich:

$$X_{\rm A}(f) = X(f) \star \sum_{\mu = - \infty }^{+\infty} \delta (f- \mu \cdot f_{\rm A} ) = \sum_{\mu = - \infty }^{+\infty} X (f- \mu \cdot f_{\rm A} )\hspace{0.05cm}.$$

$\text{Fazit:}$  Die Abtastung des analogen Zeitsignals  $x(t)$  in äquidistanten Abständen  $T_{\rm A}$  führt im Spektralbereich zu einer  periodischen Fortsetzung  von  $X(f)$  mit dem Frequenzabstand  $f_{\rm A} = 1/T_{\rm A}$.


Spektrum des abgetasteten Signals

$\text{Beispiel 1:}$  Die obere Grafik zeigt  (schematisch!)  das Spektrum  $X(f)$  eines Analogsignals  $x(t)$, das Frequenzen bis  $5 \text{ kHz}$  beinhaltet.

Tastet man das Signal mit der Abtastrate  $f_{\rm A}\,\text{ = 20 kHz}$, also im jeweiligen Abstand  $T_{\rm A}\, = {\rm 50 \, µs}$  ab, so erhält man das unten skizzierte periodische Spektrum  $X_{\rm A}(f)$.

  • Da die Diracfunktionen unendlich schmal sind, beinhaltet das abgetastete Signal  $x_{\rm A}(t)$  auch beliebig hochfrequente Anteile.
  • Dementsprechend ist die Spektralfunktion  $X_{\rm A}(f)$  des abgetasteten Signals bis ins Unendliche ausgedehnt.


Signal reconstruction

Gemeinsames Modell von „Signalabtastung” und „Signalrekonstruktion”

Die Signalabtastung ist bei einem digitalen Übertragungssystem kein Selbstzweck, sondern sie muss irgendwann wieder rückgängig gemacht werden.  Betrachten wir zum Beispiel das folgende System:

  • Das Analogsignal  $x(t)$  mit der Bandbreite  $B_{\rm NF}$  wird wie oben beschrieben abgetastet.
  • Am Ausgang eines idealen Übertragungssystems liegt das ebenfalls zeitdiskrete Signal  $y_{\rm A}(t) = x_{\rm A}(t)$  vor.
  • Die Frage ist nun, wie der Block   Signalrekonstruktion   zu gestalten ist, damit auch  $y(t) = x(t)$  gilt.
Frequenzbereichsdarstellung der „Signalrekonstruktion”


Die Lösung ist einfach, wenn man die Spektralfunktionen betrachtet:  

Man erhält aus  $Y_{\rm A}(f)$  das Spektrum  $Y(f) = X(f)$  durch ein Tiefpass Filter mit dem  Frequenzgang  $H_{\rm E}(f)$, der 

  • die tiefen Frequenzen unverfälscht durchlässt:
$$H_{\rm E}(f) = 1 \hspace{0.3cm}{\rm{f\ddot{u}r}} \hspace{0.3cm} |f| \le B_{\rm NF}\hspace{0.05cm},$$
  • die hohen Frequenzen vollständig unterdrückt:
$$H_{\rm E}(f) = 0 \hspace{0.3cm}{\rm{f\ddot{u}r}} \hspace{0.3cm} |f| \ge f_{\rm A} - B_{\rm NF}\hspace{0.05cm}.$$

Weiter ist aus der nebenstehenden Grafik zu erkennen:   Solange die beiden oben genannten Bedingungen erfüllt sind, kann  $H_{\rm E}(f)$  im Bereich von  $B_{\rm NF}$  bis  $f_{\rm A}–B_{\rm NF}$  beliebig geformt sein kann,

  • beispielsweise linear abfallend (gestrichelter Verlauf)
  • oder auch rechteckförmig,


The Sampling Theorem

Die vollständige Rekonstruktion des Analogsignals  $y(t)$  aus dem abgetasteten Signal  $y_{\rm A}(t) = x_{\rm A}(t)$  ist nur möglich, wenn die Abtastrate  $f_{\rm A}$  entsprechend der Bandbreite  $B_{\rm NF}$  des Nachrichtensignals richtig gewählt wurde.

Aus der obigen Grafik erkennt man, dass folgende Bedingung erfüllt sein muss:   $f_{\rm A} - B_{\rm NF} > B_{\rm NF} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}f_{\rm A} > 2 \cdot B_{\rm NF}\hspace{0.05cm}.$

$\text{Abtasttheorem:}$  Besitzt ein Analogsignal  $x(t)$  nur Spektralanteile im Bereich  $\vert f \vert < B_{\rm NF}$, so kann dieses aus seinem abgetasteten Signal  $x_{\rm A}(t)$  nur dann vollständig rekonstruiert werden, wenn die Abtastrate hinreichend groß ist:

$$f_{\rm A} ≥ 2 \cdot B_{\rm NF}.$$

Für den Abstand zweier Abtastwerte muss demnach gelten:

$$T_{\rm A} \le \frac{1}{ 2 \cdot B_{\rm NF} }\hspace{0.05cm}.$$


Wird bei der Abtastung der größtmögliche Wert   ⇒   $T_{\rm A} = 1/(2B_{\rm NF})$  herangezogen,

  • so muss zur Signalrekonstruktion des Analogsignals aus seinen Abtastwerten
  • ein idealer, rechteckförmiger Tiefpass mit der Grenzfrequenz  $f_{\rm G} = f_{\rm A}/2 = 1/(2T_{\rm A})$  verwendet werden.


$\text{Beispiel 2:}$  Die Grafik zeigt oben das auf  $\pm\text{ 5 kHz}$  begrenzte Spektrum  $X(f)$  eines Analogsignals, unten das Spektrum  $X_{\rm A}(f)$  des im Abstand  $T_{\rm A} =\,\text{ 100 µs}$  abgetasteten Signals   ⇒   $f_{\rm A}=\,\text{ 10 kHz}$.

Abtasttheorem im Frequenzbereich

Zusätzlich eingezeichnet ist der Frequenzgang  $H_{\rm E}(f)$  des tiefpassartigen Empfangsfilters zur Signalrekonstruktion, dessen Grenzfrequenz exakt  $f_{\rm G} = f_{\rm A}/2 = 5\,\text{ kHz}$  betragen muss.


  • Mit jedem anderen  $f_{\rm G}$–Wert ergäbe sich  $Y(f) \neq X(f)$.
  • Bei  $f_{\rm G} < 5\,\text{ kHz}$  fehlen die oberen  $X(f)$–Anteile.
  • Bei  $f_{\rm G} > 5\,\text{ kHz}$  kommt es aufgrund von Faltungsprodukten zu unerwünschten Spektralanteilen in  $Y(f)$.


Wäre am Sender die Abtastung mit einer Abtastrate  $f_{\rm A} < 10\ \text{ kHz}$  erfolgt   ⇒   $T_{\rm A} >100 \ {\rm µ s}$, so wäre das Analogsignal  $y(t) = x(t)$  aus den Abtastwerten  $y_{\rm A}(t)$  auf keinen Fall rekonstruierbar.


Exercises


Aufgaben 2D-Gauss.png
  • First, select the number  (1, ... , 10)  of the task to be processed.
  • A task description is displayed. The parameter values are adjusted.
  • Solution after pressing „sample solution”.
  • The number  0  corresponds to a „Reset”:  Same setting as at program start.
  • All signal values are normalized to  $\pm 1$  to be understood.  Powers are normalized values, too.


(1)  Source signal:  $x(t) = A \cdot \cos (2\pi \cdot f_0 \cdot t -\varphi)$  with  $f_0 = \text{4 kHz}$.   Sampling with  $f_{\rm A} = \text{10 kHz}$.  Rectanglular low pass;  cut-off frequency:  $f_{\rm G} = \text{5 kHz}$.
            Interpret the shown graphics and evaluate the present signal reconstruction for all permitted parameter values of $A$  and $\varphi$.

  •  The spectrum  $X(f)$  consists of two dirac functions at  $\pm \text{4 kHz}$, each with pulse weight  $0.5$.
  •  By the periodic continuation  $X_{\rm A}(f)$  has lines of equal height at  $\pm \text{4 kHz}$,  $\pm \text{6 kHz}$,  $\pm \text{14 kHz}$,  $\pm \text{16 kHz}$,  $\pm \text{24 kHz}$,  $\pm \text{26 kHz}$,  etc.
  •  The rectanglular low pass with the cut-off frequency  $f_{\rm G} = \text{5 kHz}$  removes all lines except the two at  $\pm \text{4 kHz}$  ⇒  $Y(f) =X(f)$  ⇒  $y(t) =x(t)$  ⇒   $P_\varepsilon = 0$.
  •  The signal reconstruction works perfectly here  $(P_\varepsilon = 0)$  for all amplitudes $A$  and any phases $\varphi$.


(2)  Continue with  $A=1$,  $f_0 = \text{4 kHz}$,  $\varphi=0$,  $f_{\rm A} = \text{10 kHz}$,  $f_{\rm G} = \text{5 kHz}$.   Which results do the rolloff–factors  $r=0.2$,  $r=0.5$  and   $r=1$ provide?
          Specify the power values  $P_x$  and  $P_\varepsilon$ .   For which  $r$–values is  $P_\varepsilon= 0$?  Do these results also apply to other  $A$  and  $\varphi$?

  •  With  $|X_1|=0.5$  the signal power is  $P_x = 2\cdot 0.5^2 = 0.5$.  The distortion power  $P_\varepsilon$  depends significantly on the rolloff–factor  $r$ .
  •  $P_\varepsilon$  is zero for  $r \le 0.2$.  The  $X_{\rm A}(f)$ line at  $f_0 = \text{4 kHz}$  is not changed by the low pass and the unwanted  line at  $\text{6 kHz}$  is fully suppressed.
  •  $r = 0.5$ :  $Y(f = \text{4 kHz}) = 0.35$,  $Y(f = \text{6 kHz}) = 0.15$  ⇒   $|E(f = \text{4 kHz})| = |E(f = \text{6 kHz})|= 0. 15$  ⇒  $P_\varepsilon = 0.09$  ⇒  $10 \cdot \lg \ (P_x/P_\varepsilon)=7.45\ \rm dB$.
  • $r = 1.0$ :  $Y(f = \text{4 kHz}) = 0.3$,  $Y(f = \text{6 kHz}) = 0.2$  ⇒   $|E(f = \text{4 kHz})| = |E(f = \text{6 kHz})|= 0. 2$  ⇒  $P_\varepsilon = 0.16$  ⇒  $10 \cdot \lg \ (P_x/P_\varepsilon)=4.95\ \rm dB$.
  •  For all  $r$  the distortion power $P_\varepsilon$  is independent of  $\varphi$.   The amplitude  $A$  affects  $P_x$  and  $P_\varepsilon$  in the same way   ⇒   the quotient is independent of  $A$.

(3)  Nun gelte  $A=1$,  $f_0 = \text{5 kHz}$,  $\varphi=0$,  $f_{\rm A} = \text{10 kHz}$,  $f_{\rm G} = \text{5 kHz}$,  $r=0$  $($Rechteck–Tiefpass$)$.  Interpretieren Sie das Ergebnis der Signalrekonstruktion.

  •  $X(f)$  besteht aus zwei Diraclinien bei  $\pm \text{5 kHz}$  $($Gewicht  $0.5)$.  Durch die periodische Fortsetzung hat  $X_{\rm A}(f)$  Linien bei  $\pm \text{5 kHz}$,  $\pm \text{15 kHz}$,  $\pm \text{25 kHz}$,  usw.
  •   Der Rechteck–Tiefpass entfernt die Linien bei  $\pm \text{15 kHz}$,  $\pm \text{25 kHz}$,  Die Linien bei  $\pm \text{5 kHz}$  werden wegen  $H_{\rm E}(\pm f_{\rm G}) = H_{\rm E}(\pm \text{5 kHz}) = 0.5$ halbiert
  •    ⇒   $\text{Gewichte von }X(f = \pm \text{5 kHz})$:  $0.5$   |   $\text{Gewichte von }X(f_{\rm A} = \pm \text{5 kHz})$:  $1.0$;     |   $\text{Gewichte von }Y(f = \pm \text{5 kHz})$:  $0.5$   ⇒   $Y(f)=X(f)$.
  •  Die Signalrekonstruktion funktioniert also auch hier perfekt  $(P_\varepsilon = 0)$.  Das gilt auch für die Phase  $\varphi=180^\circ$   ⇒   $x(t) = -A \cdot \cos (2\pi \cdot f_0 \cdot t)$.

(4)  Es gelten weiter die Einstellungen von  (3)  mit Ausnahme von  $\varphi=30^\circ$.  Interpretieren Sie die Unterschiede gegenüber der Einstellung  (3)   ⇒   $\varphi=0^\circ$.

  •  Die Phasenbeziehung geht verloren.  Das Sinkensignal  $y(t)$  verläuft cosinusförmig  $(\varphi_y=0^\circ)$  mit um  $\cos(\varphi_x)$  kleinerer Amplitude als das Quellensignal  $x(t)$.
  •  Begründung im Frequenzbereich:  Bei der periodische Fortsetzung von  $X(f)$  ⇒  $X_{\rm A}(f)$  sind nur die Realteile zu addieren.  Die Imaginärteile löschen sich aus.
  •  Die  $f_0$–Diraclinie von  $Y(f)$  ist reell, die von  $X(f)$  komplex und die von  $E(f)$  imaginär   ⇒   $\varepsilon(t)$  verläuft minus–sinusförmig   ⇒   $P_\varepsilon = 0.125$.

Carolin: Bitte letzte Zeile der Musterlösung ändern

(5)  Verdeutlichen Sie sich nochmals das Ergebnis von  (4)  im Vergleich zu den Einstellungen  $f_0 = \text{5 kHz}$,  $\varphi=30^\circ$,  $f_{\rm A} = \text{11 kHz}$,  $f_{\rm G} = \text{5.5 kHz}$.

  •  Bei dieser Einstellung hat das  $X_{\rm A}(f)$–Spektrum auch einen positiven Imaginärteil bei  $\text{5 kHz}$  und einen negativen Imaginärteil gleicher Höhe bei  $\text{6 kHz}$.
  •  Der Rechteck–Tiefpass mit der Grenzfrequenz  $\text{5.5 kHz}$  entfernt diesen zweiten Anteil.  Somit ist bei dieser Einstellung  $Y(f) =X(f)$   ⇒   $P_\varepsilon = 0$.
  •  Jede  $f_0$–Schwingung beliebiger Phase ist fehlerfrei aus seinen Abtastwerten rekonstruierbar, falls  $f_{\rm A} = 2 \cdot f_{\rm 0} + \mu, \ f_{\rm G}= f_{\rm A}/2$  $($beliebig kleines $\mu>0)$.
  •  Bei wertkontinuierlichem Spektrum mit   $X(|f|> f_0) \equiv 0$  ⇒   $\big[$keine Diraclinien bei $\pm f_0 \big ]$ genügt grundsätzlich die Abtastrate  $f_{\rm A} = 2 \cdot f_{\rm 0}$.

(6)  Es gelten weiter die Einstellungen von  (3)  und  (4)  mit Ausnahme von  $\varphi=90^\circ$.  Interpretieren Sie die Darstellungen im Zeit– und Frequenzbereich.

  •  Das Quellensignal wird genau bei seinen Nulldurchgängen abgetastet   ⇒   $x_{\rm A}(t) \equiv 0$  ⇒    $y(t) \equiv 0$  ⇒  $\varepsilon(t)=-x(t)$  ⇒  $P_\varepsilon = P_x$  ⇒  $10 \cdot \lg \ (P_x/P_\varepsilon)=0\ \rm dB$.
  •  Beschreibung im Frequenzbereich:  Wie in  (4)  löschen sich die Imaginärteile von  $X_{\rm A}(f)$  aus.  Auch die Realteile von  $X_{\rm A}(f)$  sind wegen des Sinusverlaufs Null.

(7)  Nun betrachten wir das  $\text {Quellensignal 2}$.  Die weiteren Parameter seien  $f_{\rm A} = \text{5 kHz}$,  $f_{\rm G} = \text{2.5 kHz}$,  $r=0$.  Interpretieren Sie die Ergebnisse.

  •  Das Quellensignal besitzt Spektralanteile bis  $\pm \text{2 kHz}$.  Die Signalleistung ist $P_x = 2 \cdot \big[0.1^2 + 0.25^2+0.15^2\big]= 0.19 $. 
  •  Mit der Abtastrate  $f_{\rm A} = \text{5 kHz}$  sowie den Empfängerparametern  $f_{\rm G} = \text{2.5 kHz}$  und  $r=0$ funktioniert die Signalrekonstruktion perfekt:  $P_\varepsilon = 0$.
  •  Ebenso mit dem Trapez–Tiefpass mit  $f_{\rm G} = \text{2.5 kHz}$, wenn für den Rolloff–Faktor gilt:  $r \le 0.2$.

(8)  Was passiert, wenn die Grenzfrequenz  $f_{\rm G} = \text{1.5 kHz}$  des Rechteck–Tiefpasses zu klein ist?  Interpretieren Sie insbesondere das Fehlersignal  $\varepsilon(t)=y(t)-x(t)$.

  •  Das Fehlersignal  $\varepsilon(t)=-0.3 \cdot \cos(2\pi \cdot \text{2 kHz} \cdot t -60^\circ)=0.3 \cdot \cos(2\pi \cdot \text{2 kHz} \cdot t +120^\circ)$  ist gleich dem (negierten) Signalanteil bei  $\text{2 kHz}$.  Stimmt das?
  •  Die Verzerrungsleistung ist  $P_\varepsilon(t)=2 \cdot 0.15^2= 0.045$  und der Signal–zu–Verzerrungsabstand  $10 \cdot \lg \ (P_x/P_\varepsilon)=10 \cdot \lg \ (0.19/0.045)= 6.26\ \rm dB$.

(9)  Was passiert, wenn die Grenzfrequenz  $f_{\rm G} = \text{3.5 kHz}$  des Rechteck–Tiefpasses zu groß ist?  Interpretieren Sie insbesondere das Fehlersignal  $\varepsilon(t)=y(t)-x(t)$.

  •  Das Fehlersignal  $\varepsilon(t)=0.3 \cdot \cos(2\pi \cdot \text{3 kHz} \cdot t +60^\circ)$  ist nun gleich dem vom Tiefpass nicht entfernten $\text{3 kHz}$–Anteil des Sinkensignals  $y(t)$.  Stimmt das?
  •  Gegenüber der Teilaufgabe  (8)  verändert sich die Frequenz von  $\text{2 kHz}$  auf  $\text{3 kHz}$  und auch die Phasenbeziehung.
  •  Die Amplitude dieses  $\text{3 kHz}$–Fehlersignals ist gleich der Amplitude des  $\text{2 kHz}$–Anteils von$x(t)$.  Auch hier gilt  $P_\varepsilon(t)= 0.045$,  $10 \cdot \lg \ (P_x/P_\varepsilon)= 6.26\ \rm dB$.

(10)  Abschließend betrachten wir das  $\text {Quellensignal 4}$  $($Anteile bis  $\pm \text{4 kHz})$, sowie  $f_{\rm A} = \text{5 kHz}$,  $f_{\rm G} = \text{2.5 kHz}$,  $0 \le r\le 1$.  Interpretation der Ergebnisse.

  •  Bis zum Rolloff–Faktor  $r=0.2$  funktioniert die Signalrekonstruktion perfekt  $(P_\varepsilon = 0)$.  Erhöht man  $r$, so nimmt  $P_\varepsilon$  kontinuierlich zu und  $10 \cdot \lg \ (P_x/P_\varepsilon)$  ab.
  •  Mit  $r=1$  werden die Signalfrequenzen  $\text{0.5 kHz}$,  ...,  $\text{4 kHz}$  abgeschwächt, umso mehr, je höher die Frequenz ist, zum Beispiel  $H_{\rm E}(f=\text{4 kHz}) = 0.6$.
  •  Ebenso beinhaltet  $Y(f)$  aufgrund der periodischen Fortsetzung auch Anteile bei den Frequenzen  $\text{6 kHz}$,  $\text{7 kHz}$,  $\text{8 kHz}$,  $\text{9 kHz}$  und  $\text{9.5 kHz}$.
  •  Zu den Abtastzeitpunkten  $t\hspace{0.05cm}' = n \cdot T_{\rm A}$  stimmen  $x(t\hspace{0.05cm}')$  und  $y(t\hspace{0.05cm}')$  exakt überein   ⇒   $\varepsilon(t\hspace{0.05cm}') = 0$.  Dazwischen nicht   ⇒   kleine Verzerrungsleistung  $P_\varepsilon = 0.008$.

Carolin: Bitte zweite Zeile der Musterlösung ändern
Außerdem müssten bei den Signalen 2 bis 4 jeweils der Phasenwert phi_1 = 180 Grad ausgegeben werden (Realteil von 1 kHz jeweils negativ)



Applet Manual


Anleitung Auge.png

    (A)     Auswahl:   Codierung
                   (binär,  quaternär,  AMI–Code,  Duobinärcode)

    (B)     Auswahl:   Detektionsgrundimpuls
                    (nach Gauß–TP,  CRO–Nyquist,  nach Spalt–TP}

    (C)     Prametereingabe zu  (B)
                   (Grenzfrequenz,  Rolloff–Faktor,  Rechteckdauer)

    (D)     Steuerung der Augendiagrammdarstellung
                   (Start,  Pause/Weiter,  Einzelschritt,  Gesamt,  Reset)

    (E)     Geschwindigkeit der Augendiagrammdarstellung

    (F)     Darstellung:  Detektionsgrundimpuls  $g_d(t)$

    (G)     Darstellung:  Detektionsnutzsignal  $d_{\rm S}(t - \nu \cdot T)$

    (H)     Darstellung:  Augendiagramm im Bereich  $\pm T$

    ( I )     Numerikausgabe:  $ö_{\rm norm}$  (normierte Augenöffnung)

    (J)     Prametereingabe  $10 \cdot \lg \ E_{\rm B}/N_0$  für  (K)

    (K)     Numerikausgabe:  $\sigma_{\rm norm}$  (normierter Rauscheffektivwert)

    (L)     Numerikausgabe:  $p_{\rm U}$  (ungünstigste Fehlerwahrscheinlichkeit)

    (M)     Bereich für die Versuchsdurchführung:   Aufgabenauswahl

    (N)     Bereich für die Versuchsdurchführung:   Aufgabenstellung

    (O)     Bereich für die Versuchsdurchführung:   Musterlösung einblenden

About the Authors

Dieses interaktive Berechnungstool wurde am  Lehrstuhl für Nachrichtentechnik  der  Technischen Universität München  konzipiert und realisiert.

  • Die erste Version wurde 2008 von  Slim Lamine  im Rahmen einer Werkstudententätigkeit mit „FlashMX–Actionscript” erstellt (Betreuer:  Günter Söder).
  • 2020 wurde das Programm von  Carolin Mirschina  im Rahmen einer Werkstudententätigkeit auf „HTML5” umgesetzt und neu gestaltet (Betreuer:  Tasnád Kernetzky).


Die Umsetzung dieses Applets auf HTML 5 wurde durch  Studienzuschüsse  der Fakultät EI der TU München finanziell unterstützt. Wir bedanken uns.

Translated with www.DeepL.com/Translator (free version)


Once again:  Open Applet in new Tab

Open Applet in new Tab