Kanalcodierung/Kanalmodelle und Entscheiderstrukturen: Unterschied zwischen den Versionen
Ayush (Diskussion | Beiträge) |
|||
(36 dazwischenliegende Versionen von 3 Benutzern werden nicht angezeigt) | |||
Zeile 9: | Zeile 9: | ||
== AWGN–Kanal bei binärem Eingang == | == AWGN–Kanal bei binärem Eingang == | ||
<br> | <br> | ||
− | Wir betrachten das bekannte zeitdiskrete [ | + | Wir betrachten das bekannte zeitdiskrete [[Modulationsverfahren/Qualit%C3%A4tskriterien#Einige_Anmerkungen_zum_AWGN.E2.80.93Kanalmodell| AWGN–Kanalmodell]] gemäß der unteren linken Grafik: |
− | *Das binäre und zeitdiskrete Nachrichtensignal | + | *Das binäre und zeitdiskrete Nachrichtensignal $x$ nimmt mit gleicher Wahrscheinlichkeit die Werte $0$ und $1$ an: |
+ | :$${\rm Pr}(x = 0) ={\rm Pr}(x = 1) = 1/2.$$ | ||
+ | *Wir transformieren nun die unipolare Variable $x \in \{0,\ 1 \}$ in die für die Signalübertragung besser geeignete bipolare Variable $\tilde{x} \in \{+1, -1 \}$. Dann gilt: | ||
+ | [[Datei:P ID2340 KC T 1 2 S1 v2.png|right|frame|Modell und Wahrscheinlichkeitsdichtefunktion (WDF) des AWGN–Kanals|class=fit]] | ||
+ | :$${\rm Pr}(\tilde{x} =+1) ={\rm Pr}(\tilde{x} =-1) = 1/2.$$ | ||
+ | *Die Übertragung wird durch [[Digitalsignalübertragung/Systemkomponenten_eines_Basisbandübertragungssystems#.C3.9Cbertragungskanal_und_St.C3.B6rungen| additives weißes gaußverteiltes Rauschen]] (AWGN) $n$ mit der (normierten) Rauschleistung $\sigma^2 = N_0/E_{\rm B}$ beeinträchtigt. Die Streuung der Gauß–WDF ist $\sigma$.<br> | ||
− | * | + | *Aufgrund der Gaußschen WDF kann das Ausgangssignal $y = \tilde{x} +n$ alle reellen Werte im Bereich von $-\infty$ bis $+\infty$ annehmen. Der Signalwert $y$ ist demzufolge zwar wie $x$ $($bzw. $\tilde{x})$ zeitdiskret, im Gegensatz zu diesem aber wertkontinuierlich.<br> |
+ | <br clear=all> | ||
+ | Die rechte Grafik zeigt (in blau bzw. rot) die zwei bedingten Wahrscheinlichkeitsdichtefunktionen: | ||
− | + | ::<math>f_{y \hspace{0.03cm}| \hspace{0.03cm}x=0 } \hspace{0.05cm} (y \hspace{0.05cm}| \hspace{0.05cm}x=0 )\hspace{-0.1cm} = \hspace{-0.1cm} | |
+ | \frac {1}{\sqrt{2\pi} \cdot \sigma } \cdot {\rm e}^{ - (y-1)^2/(2\sigma^2) }\hspace{0.05cm},</math> | ||
+ | ::<math>f_{y \hspace{0.03cm}| \hspace{0.03cm}x=1 } \hspace{0.05cm} (y \hspace{0.05cm}| \hspace{0.05cm}x=1 )\hspace{-0.1cm} = \hspace{-0.1cm} | ||
+ | \frac {1}{\sqrt{2\pi} \cdot \sigma } \cdot {\rm e}^{ - (y+1)^2/(2\sigma^2) }\hspace{0.05cm}.</math> | ||
− | + | Nicht dargestellt ist die gesamte (unbedingte) WDF, für die bei gleichwahrscheinlichen Symbolen gilt: | |
− | + | ::<math>f_y(y) = {1}/{2} \cdot \left [ f_{y \hspace{0.03cm}| \hspace{0.03cm}x=0 } \hspace{0.05cm} (y \hspace{0.05cm}| \hspace{0.05cm}x=0 ) + | |
− | + | f_{y \hspace{0.03cm}| \hspace{0.03cm}x=1 } \hspace{0.05cm} (y \hspace{0.05cm}| \hspace{0.05cm}x=1 )\right ]\hspace{0.05cm}.</math> | |
− | :<math>f_{y \hspace{0.03cm}| \hspace{0.03cm}x=0 } \hspace{0.05cm} (y \hspace{0.05cm}| \hspace{0.05cm}x=0 ) | ||
− | |||
− | |||
− | |||
− | + | Die beiden schraffierten Flächeninhalte $($jeweils $\varepsilon)$ markieren Entscheidungsfehler unter der Voraussetzung | |
+ | *$x=0$ ⇒ $\tilde{x} = +1$ (blau) bzw. | ||
+ | *$x=1$ ⇒ $\tilde{x} = -1$ (rot), | ||
− | |||
− | |||
− | + | wenn harte Entscheidungen getroffen werden: | |
− | :<math>z = \left\{ \begin{array}{c} 0\\ | + | ::<math>z = \left\{ \begin{array}{c} 0\\ |
1 \end{array} \right.\quad | 1 \end{array} \right.\quad | ||
\begin{array}{*{1}c} {\rm falls} \hspace{0.15cm} y > 0\hspace{0.05cm},\\ | \begin{array}{*{1}c} {\rm falls} \hspace{0.15cm} y > 0\hspace{0.05cm},\\ | ||
{\rm falls} \hspace{0.15cm}y < 0\hspace{0.05cm}.\\ \end{array}</math> | {\rm falls} \hspace{0.15cm}y < 0\hspace{0.05cm}.\\ \end{array}</math> | ||
− | Bei gleichwahrscheinlichen Eingangssymbolen ist dann die mittlere Bitfehlerwahrscheinlichkeit Pr( | + | Bei gleichwahrscheinlichen Eingangssymbolen ist dann die mittlere Bitfehlerwahrscheinlichkeit ${\rm Pr}(z \ne x)$ ebenfalls gleich $\varepsilon$. Mit dem [[Stochastische_Signaltheorie/Gaußverteilte_Zufallsgrößen#.C3.9Cberschreitungswahrscheinlichkeit|komplementären Gaußschen Fehlerintergral]] ${\rm Q}(x)$ gilt dabei: |
− | :<math>\varepsilon = {\rm Q}(1/\sigma) = {\rm Q}(\sqrt{\rho}) = | + | ::<math>\varepsilon = {\rm Q}(1/\sigma) = {\rm Q}(\sqrt{\rho}) = |
\frac {1}{\sqrt{2\pi} } \cdot \int_{\sqrt{\rho}}^{\infty}{\rm e}^{- \alpha^2/2} \hspace{0.1cm}{\rm d}\alpha | \frac {1}{\sqrt{2\pi} } \cdot \int_{\sqrt{\rho}}^{\infty}{\rm e}^{- \alpha^2/2} \hspace{0.1cm}{\rm d}\alpha | ||
\hspace{0.05cm}.</math> | \hspace{0.05cm}.</math> | ||
− | Hierbei bezeichnet | + | Hierbei bezeichnet $\rho = 1/\sigma^2 = 2 \cdot E_{\rm S}/N_0$ das Signal–zu–Rauschverhältnis $\rm (SNR)$ vor dem Entscheider, wobei folgende Systemgrößen verwendet werden: |
− | * | + | *$E_{\rm S}$ ist die Signalenergie pro Symbol (ohne Codierung gleich $E_{\rm B}$, also gleich der Signalenergie pro Bit),<br> |
− | * | + | *$N_0$ bezeichnet die konstante (einseitige) Rauschleistungsdichte des AWGN–Kanals.<br><br> |
− | + | Hinweis: Der dargelegte Sachverhalt wird mit dem SWF–Applet [[Applets:Fehlerwahrscheinlichkeit|"Symbolfehlerwahrscheinlichkeit von Digitalsystemen"]] verdeutlicht. | |
== Binary Symmetric Channel – BSC == | == Binary Symmetric Channel – BSC == | ||
<br> | <br> | ||
− | Das AWGN–Kanalmodell ist kein digitales Kanalmodell, wie wir es im [ | + | Das AWGN–Kanalmodell ist kein digitales Kanalmodell, wie wir es im Abscnitt [[Kanalcodierung/Zielsetzung_der_Kanalcodierung#Blockschaltbild_und_Voraussetzungen|"Blockschaltbild und Voraussetzungen"]] zur Einführung der Kanalcodierverfahren vorausgesetzt haben. Berücksichtigen wir aber eine harte Entscheidung, so kommen wir zum digitalen Modell "Binary Symmetric Channel" $\rm (BSC)$:<br> |
+ | |||
+ | [[Datei:P ID2341 KC T 1 2 S2 v2.png|right|frame|BSC–Modell und Zusammenhang mit dem AWGN–Modell<br> <u>Hinweis:</u> Beim AWGN–Modell haben wir die binäre Ausgangsgröße mit $z \in \{0, \hspace{0.05cm}1\}$ bezeichnet. Bei den digitalen Kanalmodellen (BSC, BEC, BSEC) bezeichnen wir nun den wertdiskreten Ausgang wieder mit $y$. Um Verwechslungen zu vermeiden, nennen wir im Folgenden das Ausgangssignal des AWGN–Modells $y_{\rm A}$, und für das analoge Empfangssignal gilt dann $y_{\rm A} = \tilde{x} +n$.<br>|class=fit]] | ||
+ | |||
+ | *Wir wählen die beiden Verfälschungswahrscheinlichkeiten ${\rm Pr}(y = 1\hspace{0.05cm}|\hspace{0.05cm} x=0)$ bzw. ${\rm Pr}(y = 0\hspace{0.05cm}|\hspace{0.05cm} x=1)$ jeweils zu | ||
+ | |||
+ | ::<math>\varepsilon = {\rm Q}(\sqrt{\rho})\hspace{0.05cm}.</math> | ||
+ | |||
+ | *Damit ist der Zusammenhang zum [[Kanalcodierung/Kanalmodelle_und_Entscheiderstrukturen#AWGN.E2.80.93Kanal_bei_bin.C3.A4rem_Eingang |AWGN–Kanalmodell]] hergestellt. | ||
− | + | *Die Entscheidungsgrenze liegt bei $G = 0$, wodurch auch die Eigenschaft „symmetrisch” begründet ist.<br> | |
− | |||
− | + | Das BSC–Modell liefert eine statistisch unabhängige Fehlerfolge und eignet sich somit zur Modellierung gedächtnisloser rückkopplungsfreier Kanäle, die in diesem Buch ausnahmslos betrachtet werden.<br> | |
− | + | Zur Beschreibung gedächtnisbehafteter Kanäle müssen andere Modelle herangezogen werden, die im fünften Hauptkapitel des Buches „Digitalsignalübertragung” behandelt werden, zum Beispiel die Bündelfehlerkanäle entsprechend | |
+ | *dem [[Digitalsignalübertragung/Bündelfehlerkanäle#Kanalmodell_nach_Gilbert.E2.80.93Elliott| Gilbert–Elliott–Modell]],<br> | ||
− | + | *dem [[Digitalsignalübertragung/Bündelfehlerkanäle#Kanalmodell_nach_McCullough| McCullough–Modell]].<br><br> | |
− | + | {{GraueBox|TEXT= | |
+ | [[Datei:P ID2342 KC T 1 2 S2b.png|right|frame|Statistisch unabhängige Fehler (links) und Bündelfehler (rechts) |class=fit]] | ||
+ | $\text{Beispiel 1:}$ Die Abbildung zeigt | ||
+ | *das Originalbild in der Mitte, | ||
+ | |||
+ | *statistisch unabhängige Fehler nach dem BSC–Modell (links), | ||
− | + | *so genannte Bündelfehler gemäß Gilbert–Elliott (rechts). | |
− | |||
− | |||
− | + | Die Bitfehlerrate beträgt in beiden Fällen $10\%$. | |
− | + | Aus der rechten Grafik ist anhand der Bündelfehlerstruktur zu erkennen, dass das Bild zeilenweise übertragen wurde.}}<br> | |
== Binary Erasure Channel – BEC == | == Binary Erasure Channel – BEC == | ||
<br> | <br> | ||
− | Das BSC–Modell liefert nur die Aussagen „richtig” und „falsch”. Manche Empfänger – so zum Beispiel die so genannten [ | + | Das BSC–Modell liefert nur die Aussagen „richtig” und „falsch”. Manche Empfänger – so zum Beispiel die so genannten [[Kanalcodierung/Soft%E2%80%93in_Soft%E2%80%93out_Decoder#Hard_Decision_vs._Soft_Decision|"Soft–in Soft–out Decoder"]] – können jedoch auch gewisse Informationen über die Sicherheit der Entscheidung liefern, wobei sie natürlich darüber informiert werden müssen, welche ihrer Eingangswerte sicher sind und welche eher unsicher.<br> |
− | [[Datei:P ID2343 KC T 1 2 S3 v2.png| | + | Der "Binary Erasure Channel" $\rm (BEC)$ liefert eine solche Information. Anhand der Grafik erkennt man: |
+ | [[Datei:P ID2343 KC T 1 2 S3 v2.png|right|frame|BEC und Zusammenhang mit dem AWGN–Modell|class=fit]] | ||
+ | *Das Eingangsalphabet des BEC–Modells ist binär ⇒ $x ∈ \{0, \hspace{0.05cm}1\}$ und das Ausgangsalphabet ternär ⇒ $y ∈ \{0, \hspace{0.05cm}1, \hspace{0.05cm}\rm E\}$. | ||
− | + | *Ein "$\rm E$" kennzeichnet eine unsichere Entscheidung. Dieses neue „Symbol” steht für "Erasure", zu deutsch: Auslöschung. | |
− | * | ||
− | *Bitfehler werden durch das BEC–Modell per se ausgeschlossen. Eine unsichere Entscheidung (E) wird mit | + | *Bitfehler werden durch das BEC–Modell per se ausgeschlossen. Eine unsichere Entscheidung $\rm (E)$ wird mit Wahrscheinlichkeit $\lambda$ getroffen, während die Wahrscheinlichkeit für eine richtige (und gleichzeitig sichere) Entscheidung $1-\lambda$ beträgt. |
− | *Rechts oben ist der Zusammenhang zwischen BEC– und AWGN– | + | *Rechts oben ist der Zusammenhang zwischen BEC– und AWGN–Modell dargestellt, wobei das Erasure–Entscheidungsgebiet $\rm (E)$ grau hinterlegt ist. |
− | + | *Im Gegensatz zum BSC gibt es nun zwei Entscheidungsgrenzen, nämlich $G_0 = G$ und symmetrisch dazu $G_1 = -G$. Es gilt: | |
− | Wir weisen hier nochmals auf | + | ::<math>\lambda = {\rm Q}\big[\sqrt{\rho} \cdot (1 - G)\big]\hspace{0.05cm}.</math> |
− | *[[Fehlerwahrscheinlichkeit von Digitalsystemen | + | |
+ | Wir weisen hier nochmals auf die folgenden Applets hin: | ||
+ | *[[Applets:Fehlerwahrscheinlichkeit|Symbolfehlerwahrscheinlichkeit von Digitalsystemen]], | ||
+ | *[[Applets:Komplementäre_Gaußsche_Fehlerfunktionen|Komplementäre Gaußsche Fehlerfunktion]]. | ||
− | |||
== Binary Symmetric Error & Erasure Channel – BSEC == | == Binary Symmetric Error & Erasure Channel – BSEC == | ||
<br> | <br> | ||
− | Das BEC–Modell | + | Das BEC–Modell $($Kennzeichen: Fehlerwahrscheinlichkeit $0)$ ist eher unrealistisch und nur eine Näherung für ein extrem großes Signal–zu–Rausch–Leistungsverhältnis $\rho$. Stärkere Störungen $($das heißt, ein kleineres $\rho)$ sollten besser durch den "Binary Symmetric Error & Erasure Channel" $\rm (BSEC)$ mit den zwei Parametern |
− | *Verfälschungswahrscheinlichkeit | + | *Verfälschungswahrscheinlichkeit $\varepsilon = {\rm Pr}(y = 1\hspace{0.05cm}|\hspace{0.05cm} x=0)= {\rm Pr}(y = 0\hspace{0.05cm}|\hspace{0.05cm} x=1)$,<br> |
− | *Erasure–Wahrscheinlichkeit | + | *Erasure–Wahrscheinlichkeit $\lambda = {\rm Pr}(y = {\rm E}\hspace{0.05cm}|\hspace{0.05cm} x=0)= {\rm Pr}(y = {\rm E}\hspace{0.05cm}|\hspace{0.05cm} x=1)$ |
− | |||
− | + | modelliert werden. Wie beim BEC–Modell gilt auch hier $x ∈ \{0, \hspace{0.05cm}1\}$ und $y ∈ \{0, \hspace{0.05cm}1, \hspace{0.05cm}\rm E\}$.<br> | |
− | {{Beispiel} | + | {{GraueBox|TEXT= |
− | * | + | $\text{Beispiel 2:}$ Wir betrachten das BSEC–Modell mit den beiden Entscheidungsgeraden (symmetrisch um den Nullpunkt) |
− | + | [[Datei:KC_T_1_2_S4_version2.png|right|frame|Binary Symmetric Error & Erasure Channel (BSEC) & Zusammenhang mit dem AWGN–Modell|class=fit]] | |
− | + | *$G_0 = G = 0.5$, | |
+ | *$G_1 = -G = -0.5$. | ||
− | |||
− | + | Dessen Modellparameter $\varepsilon$ und $\lambda$ werden durch das $\rm SNR$ $\rho=1/\sigma^2$ des vergleichbaren AWGN–Kanals festgelegt. | |
− | |||
− | Für die rechts | + | *Für die rechts skizzierte WDF gilt $\sigma = 0.5$ ⇒ $\rho = 4$: |
+ | :$$\varepsilon = {\rm Q}\big[\sqrt{\rho} \cdot (1 + G)\big] = {\rm Q}(3) \approx 0.14\%\hspace{0.05cm},$$ | ||
+ | :$${\it \lambda} = {\rm Q}\big[\sqrt{\rho} \cdot (1 - G)\big] - \varepsilon = {\rm Q}(1) - {\rm Q}(3) $$ | ||
+ | :$$\Rightarrow \hspace{0.3cm}{\it \lambda} \approx 15.87\% - 0.14\% = 15.73\%\hspace{0.05cm},$$ | ||
− | == | + | *Für $\sigma = 0.25$ ⇒ $\rho = 16$ ergeben sich folgende Parameter: |
+ | |||
+ | :$$\varepsilon = {\rm Q}(6) \approx 10^{-10}\hspace{0.05cm},$$ | ||
+ | :$${\it \lambda} = {\rm Q}(2) \approx 2.27\%\hspace{0.05cm}.$$ | ||
+ | |||
+ | :Hier könnte das BSEC–Modell durch die einfachere BEC–Variante ersetzt werden, ohne dass es zu gravierenden Unterschieden kommt.}}<br> | ||
+ | |||
+ | == Maximum-a-posteriori– und Maximum-Likelihood–Kriterium == | ||
<br> | <br> | ||
− | Wir gehen nun von dem nachfolgend skizzierten Modell aus und wenden die bereits im [ | + | Wir gehen nun von dem nachfolgend skizzierten Modell aus und wenden die bereits im Kapitel [[Digitalsignal%C3%BCbertragung/Struktur_des_optimalen_Empf%C3%A4ngers|"Struktur des optimalen Empfängers"]] des Buches „Digitalsignalübertragung” genannten Entscheidungskriterien auf den Decodiervorgang an.<br> |
− | [[Datei:P ID2345 KC T 1 2 S5 v2.png|Modell zur Beschreibung von MAP– und ML–Decodierung|class=fit]] | + | {{BlaueBox|TEXT= |
+ | [[Datei:P ID2345 KC T 1 2 S5 v2.png|right|frame|Modell zur Beschreibung von MAP– und ML–Decodierung|class=fit]] | ||
+ | $\text{Aufgabe des Kanaldecoders}$ | ||
+ | ist es, den Vektor $\underline{v}$ so zu bestimmen, dass dieser „möglichst gut” mit dem Informationswort $\underline{u}$ übereinstimmt. | ||
− | + | Etwas genauer formuliert: | |
+ | *Minimierung der '''Blockfehlerwahrscheinlichkeit''' ${\rm Pr(Blockfehler)} = {\rm Pr}(\underline{v} \ne \underline{u}) $ bezogen auf die Vektoren $\underline{u}$ und $\underline{v}$, jeweils der Länge $k$. | ||
− | + | *Wegen der gleichen Zuordnung $\underline{x} = {\rm enc}(\underline{u})$ des Kanalcoders und $\underline{v} = {\rm enc}^{-1}(\underline{z})$ des Kanaldecoders gilt in gleicher Weise: | |
− | + | ::<math>{\rm Pr(Blockfehler)} = {\rm Pr}(\underline{z} \ne \underline{x})\hspace{0.05cm}. </math>}} | |
− | |||
Der Kanaldecoder in obigem Modell besteht aus zwei Teilen: | Der Kanaldecoder in obigem Modell besteht aus zwei Teilen: | ||
− | *Der | + | *Der "Codewortschätzer" ermittelt aus dem Empfangsvektor $\underline{y}$ einen Schätzwert $\underline{z} \in \mathcal{C}$ gemäß einem vorgegebenen Kriterium.<br> |
− | * | + | *Aus dem (empfangenen) Codewort $\underline{z}$ wird das Informationswort $\underline{v}$ durch "einfaches Mapping" ermittelt. Dieses sollte mit $\underline{u}$ übereinstimmen.<br><br> |
Für den Codewortschätzer gibt es insgesamt vier unterschiedliche Varianten, nämlich | Für den Codewortschätzer gibt es insgesamt vier unterschiedliche Varianten, nämlich | ||
− | + | #den Maximum–a–posteriori–Empfänger (MAP–Empfänger) für das gesamte Codewort $\underline{x}$,<br> | |
+ | #den Maximum–a–posteriori–Empfänger für die einzelnen Codebits $x_i$,<br> | ||
+ | #den Maximum–Likelihood–Empfänger (ML–Empfänger) für das gesamte Codewort $\underline{x}$,<br> | ||
+ | #den Maximum–Likelihood–Empfänger für die einzelnen Codebits $x_i$.<br><br> | ||
− | + | Deren Definitionen folgen auf der nächsten Seite. Vorab aber gleich das wesentliche Unterscheidungsmerkmal zwischen $\rm MAP$ und $\rm ML$: | |
− | * | + | {{BlaueBox|TEXT= |
+ | $\text{Fazit:}$ | ||
+ | *Ein '''MAP–Empfänger''' berücksichtigt auch unterschiedliche Auftrittswahrscheinlichkeiten für das gesamte Codewort bzw. für deren einzelne Bits.<br> | ||
− | * | + | *Sind alle Codeworte $\underline{x}$ und damit auch alle Bits $x_i$ der Codeworte gleichwahrscheinlich, so ist der einfachere '''ML–Empfänger''' äquivalent zum MAP–Empfänger.}}<br><br> |
− | + | == Definitionen der verschiedenen Optimalempfänger == | |
− | |||
− | |||
− | |||
− | |||
− | |||
<br> | <br> | ||
− | {{Definition} | + | {{BlaueBox|TEXT= |
+ | $\text{Definition:}$ Der "Maximum–a–posteriori–Empfänger auf Blockebene" – kurz: <b>block–wise MAP</b> – entscheidet sich unter den $2^k$ Codeworten $\underline{x}_i \in \mathcal{C}$ für das Codewort mit der größten Rückschlusswahrscheinlichkeit $($englisch: "a–posteriori probability", $\rm APP)$: | ||
− | :<math>\underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.03cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} {\rm Pr}( \underline{x}_{\hspace{0.03cm}i} | + | ::<math>\underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.03cm} \in \hspace{0.05cm} \mathcal{C} } \hspace{0.1cm} {\rm Pr}( \underline{x}_{\hspace{0.03cm}i} \vert\hspace{0.05cm} \underline{y} ) \hspace{0.05cm}.</math> |
− | Pr( | + | *${\rm Pr}( \underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm}\vert \hspace{0.05cm} \underline{y} )$ ist die [[Stochastische_Signaltheorie/Statistische_Abh%C3%A4ngigkeit_und_Unabh%C3%A4ngigkeit#Bedingte_Wahrscheinlichkeit| '''bedingte Wahrscheinlichkeit''']], dass $\underline{x}_i$ gesendet wurde, wenn $\underline{y}$ empfangen wird.}}<br> |
− | + | Wir versuchen nun, diese Entscheidungsregel schrittweise zu vereinfachen. Die '''Rückschlusswahrscheinlichkeit''' kann nach dem „Satz von Bayes” umgeformt werden: | |
− | :<math>{\rm Pr}( \underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm} | + | ::<math>{\rm Pr}( \underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm}\vert \hspace{0.05cm} \underline{y} ) = |
\frac{{\rm Pr}( \underline{y} \hspace{0.08cm} |\hspace{0.05cm} \underline{x}_{\hspace{0.03cm}i} ) \cdot {\rm Pr}( \underline{x}_{\hspace{0.03cm}i} )}{{\rm Pr}( \underline{y} )} \hspace{0.05cm}.</math> | \frac{{\rm Pr}( \underline{y} \hspace{0.08cm} |\hspace{0.05cm} \underline{x}_{\hspace{0.03cm}i} ) \cdot {\rm Pr}( \underline{x}_{\hspace{0.03cm}i} )}{{\rm Pr}( \underline{y} )} \hspace{0.05cm}.</math> | ||
− | Die Wahrscheinlichkeit Pr( | + | *Die Wahrscheinlichkeit ${\rm Pr}( \underline{y}) $ ist unabhängig von $\underline{x}_i$ und muss bei der Maximierung nicht berücksichtigt werden. |
+ | *Sind zudem alle $2^k$ Informationsworte $\underline{u}_i$ gleichwahrscheinlich, so kann man bei der Maximierung auch auf den Beitrag ${\rm Pr}( \underline{x}_{\hspace{0.03cm}i} ) = 2^{-k}$ im Zähler verzichten.<br> | ||
− | |||
− | + | {{BlaueBox|TEXT= | |
+ | $\text{Definition:}$ Der "Maximum–Likelihood–Empfänger auf Blockebene" – kurz: '''block–wise ML''' – entscheidet sich unter den $2^k$ zulässigen Codeworten $\underline{x}_i \in \mathcal{C}$ für das Codewort mit der größten '''Übergangswahrscheinlichkeit''': | ||
− | + | ::<math>\underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C} } \hspace{0.1cm} {\rm Pr}( \underline{y} \hspace{0.05cm}\vert\hspace{0.05cm} \underline{x}_{\hspace{0.03cm}i} ) \hspace{0.05cm}.</math> | |
− | + | *Die bedingte Wahrscheinlichkeit ${\rm Pr}( \underline{y} \hspace{0.05cm}\vert\hspace{0.05cm} \underline{x}_{\hspace{0.03cm}i} )$ ist nun in Vorwärtsrichtung zu verstehen, nämlich als die Wahrscheinlichkeit, dass der Vektor $\underline{y}$ empfangen wird, wenn das Codewort $\underline{x}_i$ gesendet wurde.<br> | |
− | + | *Im Folgenden verwenden wir auf Blockebene stets den Maximum–Likelihood–Empfänger. Aufgrund der vorausgesetzten gleichwahrscheinlichen Informationsworte liefert auch dieser stets die bestmögliche Entscheidung.}}<br> | |
− | { | + | Anders sieht es jedoch auf Bitebene aus. Ziel einer iterativen Decodierung ist es gerade, für alle Codebits $x_i \in \{0, 1\}$ Wahrscheinlichkeiten zu schätzen und diese an die nächste Stufe weiterzugeben. Hierzu benötigt man einen MAP–Empfänger.<br> |
− | + | {{BlaueBox|TEXT= | |
− | + | $\text{Definition:}$ Der "Maximum–a–posteriori–Empfänger auf Bitebene" – kurz: '''bit–wise MAP''' – wählt für jedes einzelne Codebit $x_i$ den Wert $(0$ oder $1)$ mit der größten Rückschlusswahrscheinlichkeit ${\rm Pr}( {x}_{\hspace{0.03cm}i}\vert \hspace{0.05cm} \underline{y} )$ aus: | |
− | == | + | ::<math>\underline{z} = {\rm arg}\hspace{-0.1cm}{ \max_{ {x}_{\hspace{0.03cm}i} \hspace{0.03cm} \in \hspace{0.05cm} \{0, 1\} } \hspace{0.03cm} {\rm Pr}( {x}_{\hspace{0.03cm}i}\vert \hspace{0.05cm} \underline{y} ) \hspace{0.05cm} }.</math>}}<br> |
+ | |||
+ | == Maximum-Likelihood–Entscheidung beim BSC–Kanal == | ||
<br> | <br> | ||
− | + | Wir wenden nun das Maximum–Likelihood–Kriterium auf den gedächtnislosen [[Kanalcodierung/Kanalmodelle_und_Entscheiderstrukturen#Binary_Symmetric_Channel_.E2.80.93_BSC|BSC–Kanal]] an. Dann gilt: | |
− | + | ::<math>{\rm Pr}( \underline{y} \hspace{0.05cm}|\hspace{0.05cm} \underline{x}_{\hspace{0.03cm}i} ) = | |
− | :<math>{\rm Pr}( \underline{y} \hspace{0.05cm}|\hspace{0.05cm} \underline{x}_{\hspace{0.03cm}i} ) = | + | \prod\limits_{l=1}^{n} {\rm Pr}( y_l \hspace{0.05cm}|\hspace{0.05cm} x_l ) \hspace{0.4cm}{\rm mit}\hspace{0.4cm} |
− | \prod\limits_{l=1}^{n} {\rm Pr}( y_l \hspace{0.05cm}|\hspace{0.05cm} x_l ) \hspace{0. | ||
{\rm Pr}( y_l \hspace{0.05cm}|\hspace{0.05cm} x_l ) = | {\rm Pr}( y_l \hspace{0.05cm}|\hspace{0.05cm} x_l ) = | ||
\left\{ \begin{array}{c} 1 - \varepsilon\\ | \left\{ \begin{array}{c} 1 - \varepsilon\\ | ||
Zeile 193: | Zeile 227: | ||
{\rm falls} \hspace{0.15cm}y_l \ne x_l\hspace{0.05cm}.\\ \end{array} | {\rm falls} \hspace{0.15cm}y_l \ne x_l\hspace{0.05cm}.\\ \end{array} | ||
\hspace{0.05cm}.</math> | \hspace{0.05cm}.</math> | ||
− | + | ::<math>\Rightarrow \hspace{0.3cm} {\rm Pr}( \underline{y} \hspace{0.05cm}|\hspace{0.05cm} \underline{x}_{\hspace{0.03cm}i} ) = | |
− | :<math>\Rightarrow \hspace{0.3cm} {\rm Pr}( \underline{y} \hspace{0.05cm}|\hspace{0.05cm} \underline{x}_{\hspace{0.03cm}i} ) = | ||
\varepsilon^{d_{\rm H}(\underline{y} \hspace{0.05cm}, \hspace{0.1cm}\underline{x}_{\hspace{0.03cm}i})} \cdot | \varepsilon^{d_{\rm H}(\underline{y} \hspace{0.05cm}, \hspace{0.1cm}\underline{x}_{\hspace{0.03cm}i})} \cdot | ||
(1-\varepsilon)^{n-d_{\rm H}(\underline{y} \hspace{0.05cm}, \hspace{0.1cm}\underline{x}_{\hspace{0.03cm}i})} | (1-\varepsilon)^{n-d_{\rm H}(\underline{y} \hspace{0.05cm}, \hspace{0.1cm}\underline{x}_{\hspace{0.03cm}i})} | ||
\hspace{0.05cm}.</math> | \hspace{0.05cm}.</math> | ||
− | + | {{BlaueBox|TEXT= | |
− | *Die [ | + | $\text{Beweis:}$ Dieses Ergebnis lässt sich wie folgt begründen: |
+ | *Die [[Kanalcodierung/Zielsetzung_der_Kanalcodierung#Einige_wichtige_Definitionen_zur_Blockcodierung|Hamming–Distanz]] $d_{\rm H}(\underline{y} \hspace{0.05cm}, \hspace{0.1cm}\underline{x}_{\hspace{0.03cm}i})$ gibt die Anzahl der Bitpositionen an, in denen sich die Worte $\underline{y}$ und $\underline{x}_{\hspace{0.03cm}i}$ mit jeweils $n$ binären Elementen unterscheiden. Beispiel: Die Hamming–Distanz zwischen $\underline{y}= (0, 1, 0, 1, 0, 1, 1)$ und $\underline{x}_{\hspace{0.03cm}i} = (0, 1, 0, 0, 1, 1, 1)$ ist $2$.<br> | ||
− | *In | + | *In $n - d_{\rm H}(\underline{y} \hspace{0.05cm}, \hspace{0.1cm}\underline{x}_{\hspace{0.03cm}i})$ Positionen unterscheiden sich demnach die beiden Vektoren $\underline{y}$ und $\underline{x}_{\hspace{0.03cm}i}$ nicht. Im obigen Beispiel sind fünf der $n = 7$ Bit identisch. |
+ | |||
+ | *Zu obiger Gleichung kommt man schließlich durch Einsetzen der Verfälschungswahrscheinlichkeit $\varepsilon$ bzw. deren Ergänzung $1-\varepsilon$.}}<br> | ||
− | Die Vorgehensweise bei der Maximum–Likelihood–Detektion ist, dasjenige Codewort | + | Die Vorgehensweise bei der Maximum–Likelihood–Detektion ist, dasjenige Codewort $\underline{x}_{\hspace{0.03cm}i}$ zu finden, das die Übergangswahrscheinlichkeit ${\rm Pr}( \underline{y} \hspace{0.05cm}|\hspace{0.05cm} \underline{x}_{\hspace{0.03cm}i} )$ maximiert: |
− | :<math>\underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} | + | ::<math>\underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} |
\left [ | \left [ | ||
\varepsilon^{d_{\rm H}(\underline{y} \hspace{0.05cm}, \hspace{0.1cm}\underline{x}_{\hspace{0.03cm}i})} \cdot | \varepsilon^{d_{\rm H}(\underline{y} \hspace{0.05cm}, \hspace{0.1cm}\underline{x}_{\hspace{0.03cm}i})} \cdot | ||
Zeile 214: | Zeile 250: | ||
Da der Logarithmus eine monoton steigende Funktion ist, erhält man das gleiche Ergebnis nach folgender Maximierung: | Da der Logarithmus eine monoton steigende Funktion ist, erhält man das gleiche Ergebnis nach folgender Maximierung: | ||
− | :<math>\underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} | + | ::<math>\underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} |
− | L(\underline{x}_{\hspace{0.03cm}i}) | + | L(\underline{x}_{\hspace{0.03cm}i})\hspace{0.5cm} {\rm mit}\hspace{0.5cm} L(\underline{x}_{\hspace{0.03cm}i}) = \ln \left [ |
− | |||
− | |||
\varepsilon^{d_{\rm H}(\underline{y} \hspace{0.05cm}, \hspace{0.1cm}\underline{x}_{\hspace{0.03cm}i})} \cdot | \varepsilon^{d_{\rm H}(\underline{y} \hspace{0.05cm}, \hspace{0.1cm}\underline{x}_{\hspace{0.03cm}i})} \cdot | ||
(1-\varepsilon)^{n-d_{\rm H}(\underline{y} \hspace{0.05cm}, \hspace{0.1cm}\underline{x}_{\hspace{0.03cm}i})} | (1-\varepsilon)^{n-d_{\rm H}(\underline{y} \hspace{0.05cm}, \hspace{0.1cm}\underline{x}_{\hspace{0.03cm}i})} | ||
− | \right ] | + | \right ] </math> |
− | :<math> \hspace{ | + | ::<math> \Rightarrow \hspace{0.3cm} L(\underline{x}_{\hspace{0.03cm}i}) = d_{\rm H}(\underline{y} \hspace{0.05cm}, \hspace{0.1cm}\underline{x}_{\hspace{0.03cm}i}) \cdot \ln |
− | \hspace{0.05cm} \varepsilon + [n -d_{\rm H}(\underline{y} \hspace{0.05cm}, \hspace{0.1cm}\underline{x}_{\hspace{0.03cm}i})] \cdot \ln | + | \hspace{0.05cm} \varepsilon + \big [n -d_{\rm H}(\underline{y} \hspace{0.05cm}, \hspace{0.1cm}\underline{x}_{\hspace{0.03cm}i})\big ] \cdot \ln |
− | \hspace{0.05cm} (1- \varepsilon) = | + | \hspace{0.05cm} (1- \varepsilon) = \ln \frac{\varepsilon}{1-\varepsilon} \cdot d_{\rm H}(\underline{y} \hspace{0.05cm}, \hspace{0.1cm}\underline{x}_{\hspace{0.03cm}i}) + n \cdot \ln |
− | |||
\hspace{0.05cm} (1- \varepsilon) | \hspace{0.05cm} (1- \varepsilon) | ||
\hspace{0.05cm}.</math> | \hspace{0.05cm}.</math> | ||
− | Der zweite Term dieser Gleichung ist unabhängig von | + | Hierbei ist zu berücksichtigen: |
+ | *Der zweite Term dieser Gleichung ist unabhängig von $\underline{x}_{\hspace{0.03cm}i}$ und muss für die Maximierung nicht weiter betrachtet werden. | ||
+ | |||
+ | *Auch der Faktor vor der Hamming–Distanz ist für alle $\underline{x}_{\hspace{0.03cm}i}$ gleich. | ||
+ | |||
+ | *Da $\ln \, {\varepsilon}/(1-\varepsilon)$ negativ ist (zumindest für $\varepsilon <0.5$, was ohne große Einschränkung vorausgestzt werden kann), wird aus der Maximierung eine Minimierung, und man erhält folgendes Endergebnis:<br> | ||
+ | |||
+ | |||
+ | {{BlaueBox|TEXT= | ||
+ | $\text{Maximum–Likelihood-Entscheidung beim BSC-Kanal:}$ | ||
− | + | Wähle von den $2^k$ zulässigen Codeworten $\underline{x}_{\hspace{0.03cm}i}$ dasjenige mit der '''geringsten Hamming–Distanz''' $d_{\rm H}(\underline{y} \hspace{0.05cm}, \hspace{0.1cm}\underline{x}_{\hspace{0.03cm}i})$ zum Empfangsvektor $\underline{y}$ aus: | |
− | :<math>\underline{z} = {\rm arg} \min_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} | + | ::<math>\underline{z} = {\rm arg} \min_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C} } \hspace{0.1cm} |
d_{\rm H}(\underline{y} \hspace{0.05cm}, \hspace{0.1cm}\underline{x}_{\hspace{0.03cm}i})\hspace{0.05cm}, \hspace{0.2cm} | d_{\rm H}(\underline{y} \hspace{0.05cm}, \hspace{0.1cm}\underline{x}_{\hspace{0.03cm}i})\hspace{0.05cm}, \hspace{0.2cm} | ||
− | \underline{y} \in {\rm GF}(2^n) \hspace{0.05cm}, \hspace{0.2cm}\underline{x}_{\hspace{0.03cm}i}\in {\rm GF}(2^n) \hspace{0.05cm}.</math> | + | \underline{y} \in {\rm GF}(2^n) \hspace{0.05cm}, \hspace{0.2cm}\underline{x}_{\hspace{0.03cm}i}\in {\rm GF}(2^n) \hspace{0.05cm}.</math>}} |
+ | |||
Anwendungen der ML/BSC–Entscheidung finden Sie auf den folgenden Seiten: | Anwendungen der ML/BSC–Entscheidung finden Sie auf den folgenden Seiten: | ||
− | *[ | + | *[[Kanalcodierung/Beispiele_bin%C3%A4rer_Blockcodes#Single_Parity.E2.80.93check_Codes|"Single Parity–check Code"]] $\rm (SPC)$<br> |
− | *[ | + | *[[Kanalcodierung/Beispiele_binärer_Blockcodes#Wiederholungscodes|"Wiederholungscode"]] $($englisch: "Repetition Code", $\rm RC)$.<br> |
− | == | + | == Maximum-Likelihood–Entscheidung beim AWGN–Kanal == |
<br> | <br> | ||
− | Das AWGN–Modell für einen ( | + | Das AWGN–Modell für einen $(n, k)$–Blockcode unterscheidet sich vom [[Kanalcodierung/Kanalmodelle_und_Entscheiderstrukturen#AWGN.E2.80.93Kanal_bei_bin.C3.A4rem_Eingang| Modell]] auf der ersten Kapitelseite dadurch, dass für $x$, $\tilde{x}$ und $y$ nun die entsprechenden Vektoren $\underline{x}$, $\underline{\tilde{x}}$ und $\underline{y}$ verwendet werden müssen, jeweils bestehend aus $n$ Elementen. |
− | *Der AWGN–Kanal ist per se gedächtnislos (hierfür steht das | + | |
+ | Die Schritte zur Herleitung des Maximum–Likelihood–Entscheiders bei AWGN werden nachfolgend nur stichpunktartig angegeben: | ||
+ | *Der AWGN–Kanal ist per se gedächtnislos (hierfür steht das „White” im Namen). Für die bedingte Wahrscheinlichkeitsdichtefunktion kann somit geschrieben werden: | ||
::<math>f( \underline{y} \hspace{0.05cm}|\hspace{0.05cm} \underline{\tilde{x}} ) = | ::<math>f( \underline{y} \hspace{0.05cm}|\hspace{0.05cm} \underline{\tilde{x}} ) = | ||
Zeile 250: | Zeile 295: | ||
\hspace{0.05cm}.</math> | \hspace{0.05cm}.</math> | ||
− | *Die bedingte WDF ist für jedes einzelne Codeelement ( | + | *Die bedingte WDF ist für jedes einzelne Codeelement $(l = 1, \hspace{0.05cm}\text{...} \hspace{0.05cm}, n)$ "gaußisch". Damit genügt auch die gesamte WDF einer (eindimensionalen) Gaußverteilung: |
::<math>f({y_l \hspace{0.03cm}| \hspace{0.03cm}\tilde{x}_l }) = | ::<math>f({y_l \hspace{0.03cm}| \hspace{0.03cm}\tilde{x}_l }) = | ||
− | \frac {1}{\sqrt{2\pi} \cdot \sigma } \cdot \exp \left [ - \frac {(y_l - \tilde{x}_l)^2}{2\sigma^2} \right ] | + | \frac {1}{\sqrt{2\pi} \cdot \sigma } \cdot \exp \left [ - \frac {(y_l - \tilde{x}_l)^2}{2\sigma^2} \right ]\hspace{0.3cm} |
− | + | \Rightarrow \hspace{0.3cm} f( \underline{y} \hspace{0.05cm}|\hspace{0.05cm} \underline{\tilde{x}} ) = | |
− | |||
\frac {1}{(2\pi)^{n/2} \cdot \sigma^n } \cdot \exp \left [ - \frac {1}{2\sigma^2} \cdot | \frac {1}{(2\pi)^{n/2} \cdot \sigma^n } \cdot \exp \left [ - \frac {1}{2\sigma^2} \cdot | ||
\sum_{l=1}^{n} \hspace{0.2cm}(y_l - \tilde{x}_l)^2 | \sum_{l=1}^{n} \hspace{0.2cm}(y_l - \tilde{x}_l)^2 | ||
\right ] \hspace{0.05cm}.</math> | \right ] \hspace{0.05cm}.</math> | ||
− | + | *Da $\underline{y}$ nun nicht mehr wie beim BSC–Modell wertdiskret ist, sondern wertkontinuierlich, müssen jetzt nach der ML–Entscheidungsregel Wahrscheinlichkeitsdichten untersucht werden und nicht mehr Wahrscheinlichkeiten. Das optimale Ergebnis lautet: | |
− | *Da | ||
::<math>\underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} | ::<math>\underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} | ||
− | f( \underline{y} \hspace{0.05cm}|\hspace{0.05cm} \underline{\tilde{x}}_i )\hspace{0.05cm}, \hspace{0. | + | f( \underline{y} \hspace{0.05cm}|\hspace{0.05cm} \underline{\tilde{x}}_i )\hspace{0.05cm}, \hspace{0.5cm} |
\underline{y} \in R^n\hspace{0.05cm}, \hspace{0.2cm}\underline{x}_{\hspace{0.03cm}i}\in {\rm GF}(2^n) \hspace{0.05cm}.</math> | \underline{y} \in R^n\hspace{0.05cm}, \hspace{0.2cm}\underline{x}_{\hspace{0.03cm}i}\in {\rm GF}(2^n) \hspace{0.05cm}.</math> | ||
− | *In der Algebra bezeichnet man den Abstand zweier Punkte | + | *In der Algebra bezeichnet man den Abstand zweier Punkte $\underline{y}$ und $\underline{\tilde{x}}$ im $n$–dimensionalen Raum als die [https://de.wikipedia.org/wiki/Euklidischer_Abstand Euklidische Distanz], benannt nach dem griechischen Mathematiker [https://de.wikipedia.org/wiki/Euklid Euklid], der im dritten Jahrhundert vor Christus lebte: |
::<math>d_{\rm E}(\underline{y} \hspace{0.05cm}, \hspace{0.1cm}\underline{\tilde{x}}) = | ::<math>d_{\rm E}(\underline{y} \hspace{0.05cm}, \hspace{0.1cm}\underline{\tilde{x}}) = | ||
Zeile 274: | Zeile 317: | ||
\hspace{0.05cm}.</math> | \hspace{0.05cm}.</math> | ||
− | *Damit lautet die ML–Entscheidungsregel beim AWGN–Kanal für einen jeden Blockcode unter Berücksichtigung der Tatsache, dass der erste Faktor der WDF | + | *Damit lautet die ML–Entscheidungsregel beim AWGN–Kanal für einen jeden Blockcode unter Berücksichtigung der Tatsache, dass der erste Faktor der WDF $f( \underline{y} \hspace{0.05cm}|\hspace{0.05cm} \underline{\tilde{x}_i} )$ konstant ist: |
::<math>\underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} | ::<math>\underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} | ||
Zeile 283: | Zeile 326: | ||
Nach einigen weiteren Zwischenschritten kommt man zum Ergebnis:<br> | Nach einigen weiteren Zwischenschritten kommt man zum Ergebnis:<br> | ||
− | + | {{BlaueBox|TEXT= | |
+ | $\text{Maximum–Likelihood-Entscheidung beim AWGN-Kanal:}$ | ||
+ | |||
+ | Wähle von den $2^k$ zulässigen Codeworten $\underline{x}_{\hspace{0.03cm}i}$ dasjenige mit der '''kleinsten Euklidischen Distanz''' $d_{\rm E}(\underline{y} \hspace{0.05cm}, \hspace{0.1cm}\underline{x}_{\hspace{0.03cm}i})$ zum Empfangsvektor $\underline{y}$ aus: | ||
− | :<math>\underline{z} = {\rm arg} \min_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} | + | ::<math>\underline{z} = {\rm arg} \min_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C} } \hspace{0.1cm} |
d_{\rm E}(\underline{y} \hspace{0.05cm}, \hspace{0.1cm}\underline{x}_{\hspace{0.03cm}i})\hspace{0.05cm}, \hspace{0.8cm} | d_{\rm E}(\underline{y} \hspace{0.05cm}, \hspace{0.1cm}\underline{x}_{\hspace{0.03cm}i})\hspace{0.05cm}, \hspace{0.8cm} | ||
− | \underline{y} \in R^n\hspace{0.05cm}, \hspace{0.2cm}\underline{x}_{\hspace{0.03cm}i}\in {\rm GF}(2^n) \hspace{0.05cm}.</math> | + | \underline{y} \in R^n\hspace{0.05cm}, \hspace{0.2cm}\underline{x}_{\hspace{0.03cm}i}\in {\rm GF}(2^n) \hspace{0.05cm}.</math>}} |
− | ==Aufgaben== | + | ==Aufgaben zum Kapitel== |
<br> | <br> | ||
− | [[Aufgaben: | + | [[Aufgaben:Aufgabe_1.3:_Kanalmodelle_BSC–BEC–BSEC–AWGN|Aufgabe 1.3: Kanalmodelle BSC–BEC–BSEC–AWGN]] |
− | [[Aufgaben:1.4 Maximum–Likelihood–Entscheidung| | + | [[Aufgaben:1.4 Maximum–Likelihood–Entscheidung|Aufgabe 1.4: Maximum–Likelihood–Entscheidung]] |
{{Display}} | {{Display}} |
Aktuelle Version vom 12. Juni 2022, 13:29 Uhr
Inhaltsverzeichnis
- 1 AWGN–Kanal bei binärem Eingang
- 2 Binary Symmetric Channel – BSC
- 3 Binary Erasure Channel – BEC
- 4 Binary Symmetric Error & Erasure Channel – BSEC
- 5 Maximum-a-posteriori– und Maximum-Likelihood–Kriterium
- 6 Definitionen der verschiedenen Optimalempfänger
- 7 Maximum-Likelihood–Entscheidung beim BSC–Kanal
- 8 Maximum-Likelihood–Entscheidung beim AWGN–Kanal
- 9 Aufgaben zum Kapitel
AWGN–Kanal bei binärem Eingang
Wir betrachten das bekannte zeitdiskrete AWGN–Kanalmodell gemäß der unteren linken Grafik:
- Das binäre und zeitdiskrete Nachrichtensignal $x$ nimmt mit gleicher Wahrscheinlichkeit die Werte $0$ und $1$ an:
- $${\rm Pr}(x = 0) ={\rm Pr}(x = 1) = 1/2.$$
- Wir transformieren nun die unipolare Variable $x \in \{0,\ 1 \}$ in die für die Signalübertragung besser geeignete bipolare Variable $\tilde{x} \in \{+1, -1 \}$. Dann gilt:
- $${\rm Pr}(\tilde{x} =+1) ={\rm Pr}(\tilde{x} =-1) = 1/2.$$
- Die Übertragung wird durch additives weißes gaußverteiltes Rauschen (AWGN) $n$ mit der (normierten) Rauschleistung $\sigma^2 = N_0/E_{\rm B}$ beeinträchtigt. Die Streuung der Gauß–WDF ist $\sigma$.
- Aufgrund der Gaußschen WDF kann das Ausgangssignal $y = \tilde{x} +n$ alle reellen Werte im Bereich von $-\infty$ bis $+\infty$ annehmen. Der Signalwert $y$ ist demzufolge zwar wie $x$ $($bzw. $\tilde{x})$ zeitdiskret, im Gegensatz zu diesem aber wertkontinuierlich.
Die rechte Grafik zeigt (in blau bzw. rot) die zwei bedingten Wahrscheinlichkeitsdichtefunktionen:
- \[f_{y \hspace{0.03cm}| \hspace{0.03cm}x=0 } \hspace{0.05cm} (y \hspace{0.05cm}| \hspace{0.05cm}x=0 )\hspace{-0.1cm} = \hspace{-0.1cm} \frac {1}{\sqrt{2\pi} \cdot \sigma } \cdot {\rm e}^{ - (y-1)^2/(2\sigma^2) }\hspace{0.05cm},\]
- \[f_{y \hspace{0.03cm}| \hspace{0.03cm}x=1 } \hspace{0.05cm} (y \hspace{0.05cm}| \hspace{0.05cm}x=1 )\hspace{-0.1cm} = \hspace{-0.1cm} \frac {1}{\sqrt{2\pi} \cdot \sigma } \cdot {\rm e}^{ - (y+1)^2/(2\sigma^2) }\hspace{0.05cm}.\]
Nicht dargestellt ist die gesamte (unbedingte) WDF, für die bei gleichwahrscheinlichen Symbolen gilt:
- \[f_y(y) = {1}/{2} \cdot \left [ f_{y \hspace{0.03cm}| \hspace{0.03cm}x=0 } \hspace{0.05cm} (y \hspace{0.05cm}| \hspace{0.05cm}x=0 ) + f_{y \hspace{0.03cm}| \hspace{0.03cm}x=1 } \hspace{0.05cm} (y \hspace{0.05cm}| \hspace{0.05cm}x=1 )\right ]\hspace{0.05cm}.\]
Die beiden schraffierten Flächeninhalte $($jeweils $\varepsilon)$ markieren Entscheidungsfehler unter der Voraussetzung
- $x=0$ ⇒ $\tilde{x} = +1$ (blau) bzw.
- $x=1$ ⇒ $\tilde{x} = -1$ (rot),
wenn harte Entscheidungen getroffen werden:
- \[z = \left\{ \begin{array}{c} 0\\ 1 \end{array} \right.\quad \begin{array}{*{1}c} {\rm falls} \hspace{0.15cm} y > 0\hspace{0.05cm},\\ {\rm falls} \hspace{0.15cm}y < 0\hspace{0.05cm}.\\ \end{array}\]
Bei gleichwahrscheinlichen Eingangssymbolen ist dann die mittlere Bitfehlerwahrscheinlichkeit ${\rm Pr}(z \ne x)$ ebenfalls gleich $\varepsilon$. Mit dem komplementären Gaußschen Fehlerintergral ${\rm Q}(x)$ gilt dabei:
- \[\varepsilon = {\rm Q}(1/\sigma) = {\rm Q}(\sqrt{\rho}) = \frac {1}{\sqrt{2\pi} } \cdot \int_{\sqrt{\rho}}^{\infty}{\rm e}^{- \alpha^2/2} \hspace{0.1cm}{\rm d}\alpha \hspace{0.05cm}.\]
Hierbei bezeichnet $\rho = 1/\sigma^2 = 2 \cdot E_{\rm S}/N_0$ das Signal–zu–Rauschverhältnis $\rm (SNR)$ vor dem Entscheider, wobei folgende Systemgrößen verwendet werden:
- $E_{\rm S}$ ist die Signalenergie pro Symbol (ohne Codierung gleich $E_{\rm B}$, also gleich der Signalenergie pro Bit),
- $N_0$ bezeichnet die konstante (einseitige) Rauschleistungsdichte des AWGN–Kanals.
Hinweis: Der dargelegte Sachverhalt wird mit dem SWF–Applet "Symbolfehlerwahrscheinlichkeit von Digitalsystemen" verdeutlicht.
Binary Symmetric Channel – BSC
Das AWGN–Kanalmodell ist kein digitales Kanalmodell, wie wir es im Abscnitt "Blockschaltbild und Voraussetzungen" zur Einführung der Kanalcodierverfahren vorausgesetzt haben. Berücksichtigen wir aber eine harte Entscheidung, so kommen wir zum digitalen Modell "Binary Symmetric Channel" $\rm (BSC)$:
- Wir wählen die beiden Verfälschungswahrscheinlichkeiten ${\rm Pr}(y = 1\hspace{0.05cm}|\hspace{0.05cm} x=0)$ bzw. ${\rm Pr}(y = 0\hspace{0.05cm}|\hspace{0.05cm} x=1)$ jeweils zu
- \[\varepsilon = {\rm Q}(\sqrt{\rho})\hspace{0.05cm}.\]
- Damit ist der Zusammenhang zum AWGN–Kanalmodell hergestellt.
- Die Entscheidungsgrenze liegt bei $G = 0$, wodurch auch die Eigenschaft „symmetrisch” begründet ist.
Das BSC–Modell liefert eine statistisch unabhängige Fehlerfolge und eignet sich somit zur Modellierung gedächtnisloser rückkopplungsfreier Kanäle, die in diesem Buch ausnahmslos betrachtet werden.
Zur Beschreibung gedächtnisbehafteter Kanäle müssen andere Modelle herangezogen werden, die im fünften Hauptkapitel des Buches „Digitalsignalübertragung” behandelt werden, zum Beispiel die Bündelfehlerkanäle entsprechend
- dem McCullough–Modell.
$\text{Beispiel 1:}$ Die Abbildung zeigt
- das Originalbild in der Mitte,
- statistisch unabhängige Fehler nach dem BSC–Modell (links),
- so genannte Bündelfehler gemäß Gilbert–Elliott (rechts).
Die Bitfehlerrate beträgt in beiden Fällen $10\%$.
Aus der rechten Grafik ist anhand der Bündelfehlerstruktur zu erkennen, dass das Bild zeilenweise übertragen wurde.
Binary Erasure Channel – BEC
Das BSC–Modell liefert nur die Aussagen „richtig” und „falsch”. Manche Empfänger – so zum Beispiel die so genannten "Soft–in Soft–out Decoder" – können jedoch auch gewisse Informationen über die Sicherheit der Entscheidung liefern, wobei sie natürlich darüber informiert werden müssen, welche ihrer Eingangswerte sicher sind und welche eher unsicher.
Der "Binary Erasure Channel" $\rm (BEC)$ liefert eine solche Information. Anhand der Grafik erkennt man:
- Das Eingangsalphabet des BEC–Modells ist binär ⇒ $x ∈ \{0, \hspace{0.05cm}1\}$ und das Ausgangsalphabet ternär ⇒ $y ∈ \{0, \hspace{0.05cm}1, \hspace{0.05cm}\rm E\}$.
- Ein "$\rm E$" kennzeichnet eine unsichere Entscheidung. Dieses neue „Symbol” steht für "Erasure", zu deutsch: Auslöschung.
- Bitfehler werden durch das BEC–Modell per se ausgeschlossen. Eine unsichere Entscheidung $\rm (E)$ wird mit Wahrscheinlichkeit $\lambda$ getroffen, während die Wahrscheinlichkeit für eine richtige (und gleichzeitig sichere) Entscheidung $1-\lambda$ beträgt.
- Rechts oben ist der Zusammenhang zwischen BEC– und AWGN–Modell dargestellt, wobei das Erasure–Entscheidungsgebiet $\rm (E)$ grau hinterlegt ist.
- Im Gegensatz zum BSC gibt es nun zwei Entscheidungsgrenzen, nämlich $G_0 = G$ und symmetrisch dazu $G_1 = -G$. Es gilt:
- \[\lambda = {\rm Q}\big[\sqrt{\rho} \cdot (1 - G)\big]\hspace{0.05cm}.\]
Wir weisen hier nochmals auf die folgenden Applets hin:
Binary Symmetric Error & Erasure Channel – BSEC
Das BEC–Modell $($Kennzeichen: Fehlerwahrscheinlichkeit $0)$ ist eher unrealistisch und nur eine Näherung für ein extrem großes Signal–zu–Rausch–Leistungsverhältnis $\rho$. Stärkere Störungen $($das heißt, ein kleineres $\rho)$ sollten besser durch den "Binary Symmetric Error & Erasure Channel" $\rm (BSEC)$ mit den zwei Parametern
- Verfälschungswahrscheinlichkeit $\varepsilon = {\rm Pr}(y = 1\hspace{0.05cm}|\hspace{0.05cm} x=0)= {\rm Pr}(y = 0\hspace{0.05cm}|\hspace{0.05cm} x=1)$,
- Erasure–Wahrscheinlichkeit $\lambda = {\rm Pr}(y = {\rm E}\hspace{0.05cm}|\hspace{0.05cm} x=0)= {\rm Pr}(y = {\rm E}\hspace{0.05cm}|\hspace{0.05cm} x=1)$
modelliert werden. Wie beim BEC–Modell gilt auch hier $x ∈ \{0, \hspace{0.05cm}1\}$ und $y ∈ \{0, \hspace{0.05cm}1, \hspace{0.05cm}\rm E\}$.
$\text{Beispiel 2:}$ Wir betrachten das BSEC–Modell mit den beiden Entscheidungsgeraden (symmetrisch um den Nullpunkt)
- $G_0 = G = 0.5$,
- $G_1 = -G = -0.5$.
Dessen Modellparameter $\varepsilon$ und $\lambda$ werden durch das $\rm SNR$ $\rho=1/\sigma^2$ des vergleichbaren AWGN–Kanals festgelegt.
- Für die rechts skizzierte WDF gilt $\sigma = 0.5$ ⇒ $\rho = 4$:
- $$\varepsilon = {\rm Q}\big[\sqrt{\rho} \cdot (1 + G)\big] = {\rm Q}(3) \approx 0.14\%\hspace{0.05cm},$$
- $${\it \lambda} = {\rm Q}\big[\sqrt{\rho} \cdot (1 - G)\big] - \varepsilon = {\rm Q}(1) - {\rm Q}(3) $$
- $$\Rightarrow \hspace{0.3cm}{\it \lambda} \approx 15.87\% - 0.14\% = 15.73\%\hspace{0.05cm},$$
- Für $\sigma = 0.25$ ⇒ $\rho = 16$ ergeben sich folgende Parameter:
- $$\varepsilon = {\rm Q}(6) \approx 10^{-10}\hspace{0.05cm},$$
- $${\it \lambda} = {\rm Q}(2) \approx 2.27\%\hspace{0.05cm}.$$
- Hier könnte das BSEC–Modell durch die einfachere BEC–Variante ersetzt werden, ohne dass es zu gravierenden Unterschieden kommt.
Maximum-a-posteriori– und Maximum-Likelihood–Kriterium
Wir gehen nun von dem nachfolgend skizzierten Modell aus und wenden die bereits im Kapitel "Struktur des optimalen Empfängers" des Buches „Digitalsignalübertragung” genannten Entscheidungskriterien auf den Decodiervorgang an.
$\text{Aufgabe des Kanaldecoders}$ ist es, den Vektor $\underline{v}$ so zu bestimmen, dass dieser „möglichst gut” mit dem Informationswort $\underline{u}$ übereinstimmt.
Etwas genauer formuliert:
- Minimierung der Blockfehlerwahrscheinlichkeit ${\rm Pr(Blockfehler)} = {\rm Pr}(\underline{v} \ne \underline{u}) $ bezogen auf die Vektoren $\underline{u}$ und $\underline{v}$, jeweils der Länge $k$.
- Wegen der gleichen Zuordnung $\underline{x} = {\rm enc}(\underline{u})$ des Kanalcoders und $\underline{v} = {\rm enc}^{-1}(\underline{z})$ des Kanaldecoders gilt in gleicher Weise:
- \[{\rm Pr(Blockfehler)} = {\rm Pr}(\underline{z} \ne \underline{x})\hspace{0.05cm}. \]
Der Kanaldecoder in obigem Modell besteht aus zwei Teilen:
- Der "Codewortschätzer" ermittelt aus dem Empfangsvektor $\underline{y}$ einen Schätzwert $\underline{z} \in \mathcal{C}$ gemäß einem vorgegebenen Kriterium.
- Aus dem (empfangenen) Codewort $\underline{z}$ wird das Informationswort $\underline{v}$ durch "einfaches Mapping" ermittelt. Dieses sollte mit $\underline{u}$ übereinstimmen.
Für den Codewortschätzer gibt es insgesamt vier unterschiedliche Varianten, nämlich
- den Maximum–a–posteriori–Empfänger (MAP–Empfänger) für das gesamte Codewort $\underline{x}$,
- den Maximum–a–posteriori–Empfänger für die einzelnen Codebits $x_i$,
- den Maximum–Likelihood–Empfänger (ML–Empfänger) für das gesamte Codewort $\underline{x}$,
- den Maximum–Likelihood–Empfänger für die einzelnen Codebits $x_i$.
Deren Definitionen folgen auf der nächsten Seite. Vorab aber gleich das wesentliche Unterscheidungsmerkmal zwischen $\rm MAP$ und $\rm ML$:
$\text{Fazit:}$
- Ein MAP–Empfänger berücksichtigt auch unterschiedliche Auftrittswahrscheinlichkeiten für das gesamte Codewort bzw. für deren einzelne Bits.
- Sind alle Codeworte $\underline{x}$ und damit auch alle Bits $x_i$ der Codeworte gleichwahrscheinlich, so ist der einfachere ML–Empfänger äquivalent zum MAP–Empfänger.
Definitionen der verschiedenen Optimalempfänger
$\text{Definition:}$ Der "Maximum–a–posteriori–Empfänger auf Blockebene" – kurz: block–wise MAP – entscheidet sich unter den $2^k$ Codeworten $\underline{x}_i \in \mathcal{C}$ für das Codewort mit der größten Rückschlusswahrscheinlichkeit $($englisch: "a–posteriori probability", $\rm APP)$:
- \[\underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.03cm} \in \hspace{0.05cm} \mathcal{C} } \hspace{0.1cm} {\rm Pr}( \underline{x}_{\hspace{0.03cm}i} \vert\hspace{0.05cm} \underline{y} ) \hspace{0.05cm}.\]
- ${\rm Pr}( \underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm}\vert \hspace{0.05cm} \underline{y} )$ ist die bedingte Wahrscheinlichkeit, dass $\underline{x}_i$ gesendet wurde, wenn $\underline{y}$ empfangen wird.
Wir versuchen nun, diese Entscheidungsregel schrittweise zu vereinfachen. Die Rückschlusswahrscheinlichkeit kann nach dem „Satz von Bayes” umgeformt werden:
- \[{\rm Pr}( \underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm}\vert \hspace{0.05cm} \underline{y} ) = \frac{{\rm Pr}( \underline{y} \hspace{0.08cm} |\hspace{0.05cm} \underline{x}_{\hspace{0.03cm}i} ) \cdot {\rm Pr}( \underline{x}_{\hspace{0.03cm}i} )}{{\rm Pr}( \underline{y} )} \hspace{0.05cm}.\]
- Die Wahrscheinlichkeit ${\rm Pr}( \underline{y}) $ ist unabhängig von $\underline{x}_i$ und muss bei der Maximierung nicht berücksichtigt werden.
- Sind zudem alle $2^k$ Informationsworte $\underline{u}_i$ gleichwahrscheinlich, so kann man bei der Maximierung auch auf den Beitrag ${\rm Pr}( \underline{x}_{\hspace{0.03cm}i} ) = 2^{-k}$ im Zähler verzichten.
$\text{Definition:}$ Der "Maximum–Likelihood–Empfänger auf Blockebene" – kurz: block–wise ML – entscheidet sich unter den $2^k$ zulässigen Codeworten $\underline{x}_i \in \mathcal{C}$ für das Codewort mit der größten Übergangswahrscheinlichkeit:
- \[\underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C} } \hspace{0.1cm} {\rm Pr}( \underline{y} \hspace{0.05cm}\vert\hspace{0.05cm} \underline{x}_{\hspace{0.03cm}i} ) \hspace{0.05cm}.\]
- Die bedingte Wahrscheinlichkeit ${\rm Pr}( \underline{y} \hspace{0.05cm}\vert\hspace{0.05cm} \underline{x}_{\hspace{0.03cm}i} )$ ist nun in Vorwärtsrichtung zu verstehen, nämlich als die Wahrscheinlichkeit, dass der Vektor $\underline{y}$ empfangen wird, wenn das Codewort $\underline{x}_i$ gesendet wurde.
- Im Folgenden verwenden wir auf Blockebene stets den Maximum–Likelihood–Empfänger. Aufgrund der vorausgesetzten gleichwahrscheinlichen Informationsworte liefert auch dieser stets die bestmögliche Entscheidung.
Anders sieht es jedoch auf Bitebene aus. Ziel einer iterativen Decodierung ist es gerade, für alle Codebits $x_i \in \{0, 1\}$ Wahrscheinlichkeiten zu schätzen und diese an die nächste Stufe weiterzugeben. Hierzu benötigt man einen MAP–Empfänger.
$\text{Definition:}$ Der "Maximum–a–posteriori–Empfänger auf Bitebene" – kurz: bit–wise MAP – wählt für jedes einzelne Codebit $x_i$ den Wert $(0$ oder $1)$ mit der größten Rückschlusswahrscheinlichkeit ${\rm Pr}( {x}_{\hspace{0.03cm}i}\vert \hspace{0.05cm} \underline{y} )$ aus:
- \[\underline{z} = {\rm arg}\hspace{-0.1cm}{ \max_{ {x}_{\hspace{0.03cm}i} \hspace{0.03cm} \in \hspace{0.05cm} \{0, 1\} } \hspace{0.03cm} {\rm Pr}( {x}_{\hspace{0.03cm}i}\vert \hspace{0.05cm} \underline{y} ) \hspace{0.05cm} }.\]
Maximum-Likelihood–Entscheidung beim BSC–Kanal
Wir wenden nun das Maximum–Likelihood–Kriterium auf den gedächtnislosen BSC–Kanal an. Dann gilt:
- \[{\rm Pr}( \underline{y} \hspace{0.05cm}|\hspace{0.05cm} \underline{x}_{\hspace{0.03cm}i} ) = \prod\limits_{l=1}^{n} {\rm Pr}( y_l \hspace{0.05cm}|\hspace{0.05cm} x_l ) \hspace{0.4cm}{\rm mit}\hspace{0.4cm} {\rm Pr}( y_l \hspace{0.05cm}|\hspace{0.05cm} x_l ) = \left\{ \begin{array}{c} 1 - \varepsilon\\ \varepsilon \end{array} \right.\quad \begin{array}{*{1}c} {\rm falls} \hspace{0.15cm} y_l = x_l \hspace{0.05cm},\\ {\rm falls} \hspace{0.15cm}y_l \ne x_l\hspace{0.05cm}.\\ \end{array} \hspace{0.05cm}.\]
- \[\Rightarrow \hspace{0.3cm} {\rm Pr}( \underline{y} \hspace{0.05cm}|\hspace{0.05cm} \underline{x}_{\hspace{0.03cm}i} ) = \varepsilon^{d_{\rm H}(\underline{y} \hspace{0.05cm}, \hspace{0.1cm}\underline{x}_{\hspace{0.03cm}i})} \cdot (1-\varepsilon)^{n-d_{\rm H}(\underline{y} \hspace{0.05cm}, \hspace{0.1cm}\underline{x}_{\hspace{0.03cm}i})} \hspace{0.05cm}.\]
$\text{Beweis:}$ Dieses Ergebnis lässt sich wie folgt begründen:
- Die Hamming–Distanz $d_{\rm H}(\underline{y} \hspace{0.05cm}, \hspace{0.1cm}\underline{x}_{\hspace{0.03cm}i})$ gibt die Anzahl der Bitpositionen an, in denen sich die Worte $\underline{y}$ und $\underline{x}_{\hspace{0.03cm}i}$ mit jeweils $n$ binären Elementen unterscheiden. Beispiel: Die Hamming–Distanz zwischen $\underline{y}= (0, 1, 0, 1, 0, 1, 1)$ und $\underline{x}_{\hspace{0.03cm}i} = (0, 1, 0, 0, 1, 1, 1)$ ist $2$.
- In $n - d_{\rm H}(\underline{y} \hspace{0.05cm}, \hspace{0.1cm}\underline{x}_{\hspace{0.03cm}i})$ Positionen unterscheiden sich demnach die beiden Vektoren $\underline{y}$ und $\underline{x}_{\hspace{0.03cm}i}$ nicht. Im obigen Beispiel sind fünf der $n = 7$ Bit identisch.
- Zu obiger Gleichung kommt man schließlich durch Einsetzen der Verfälschungswahrscheinlichkeit $\varepsilon$ bzw. deren Ergänzung $1-\varepsilon$.
Die Vorgehensweise bei der Maximum–Likelihood–Detektion ist, dasjenige Codewort $\underline{x}_{\hspace{0.03cm}i}$ zu finden, das die Übergangswahrscheinlichkeit ${\rm Pr}( \underline{y} \hspace{0.05cm}|\hspace{0.05cm} \underline{x}_{\hspace{0.03cm}i} )$ maximiert:
- \[\underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} \left [ \varepsilon^{d_{\rm H}(\underline{y} \hspace{0.05cm}, \hspace{0.1cm}\underline{x}_{\hspace{0.03cm}i})} \cdot (1-\varepsilon)^{n-d_{\rm H}(\underline{y} \hspace{0.05cm}, \hspace{0.1cm}\underline{x}_{\hspace{0.03cm}i})} \right ] \hspace{0.05cm}.\]
Da der Logarithmus eine monoton steigende Funktion ist, erhält man das gleiche Ergebnis nach folgender Maximierung:
- \[\underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} L(\underline{x}_{\hspace{0.03cm}i})\hspace{0.5cm} {\rm mit}\hspace{0.5cm} L(\underline{x}_{\hspace{0.03cm}i}) = \ln \left [ \varepsilon^{d_{\rm H}(\underline{y} \hspace{0.05cm}, \hspace{0.1cm}\underline{x}_{\hspace{0.03cm}i})} \cdot (1-\varepsilon)^{n-d_{\rm H}(\underline{y} \hspace{0.05cm}, \hspace{0.1cm}\underline{x}_{\hspace{0.03cm}i})} \right ] \]
- \[ \Rightarrow \hspace{0.3cm} L(\underline{x}_{\hspace{0.03cm}i}) = d_{\rm H}(\underline{y} \hspace{0.05cm}, \hspace{0.1cm}\underline{x}_{\hspace{0.03cm}i}) \cdot \ln \hspace{0.05cm} \varepsilon + \big [n -d_{\rm H}(\underline{y} \hspace{0.05cm}, \hspace{0.1cm}\underline{x}_{\hspace{0.03cm}i})\big ] \cdot \ln \hspace{0.05cm} (1- \varepsilon) = \ln \frac{\varepsilon}{1-\varepsilon} \cdot d_{\rm H}(\underline{y} \hspace{0.05cm}, \hspace{0.1cm}\underline{x}_{\hspace{0.03cm}i}) + n \cdot \ln \hspace{0.05cm} (1- \varepsilon) \hspace{0.05cm}.\]
Hierbei ist zu berücksichtigen:
- Der zweite Term dieser Gleichung ist unabhängig von $\underline{x}_{\hspace{0.03cm}i}$ und muss für die Maximierung nicht weiter betrachtet werden.
- Auch der Faktor vor der Hamming–Distanz ist für alle $\underline{x}_{\hspace{0.03cm}i}$ gleich.
- Da $\ln \, {\varepsilon}/(1-\varepsilon)$ negativ ist (zumindest für $\varepsilon <0.5$, was ohne große Einschränkung vorausgestzt werden kann), wird aus der Maximierung eine Minimierung, und man erhält folgendes Endergebnis:
$\text{Maximum–Likelihood-Entscheidung beim BSC-Kanal:}$
Wähle von den $2^k$ zulässigen Codeworten $\underline{x}_{\hspace{0.03cm}i}$ dasjenige mit der geringsten Hamming–Distanz $d_{\rm H}(\underline{y} \hspace{0.05cm}, \hspace{0.1cm}\underline{x}_{\hspace{0.03cm}i})$ zum Empfangsvektor $\underline{y}$ aus:
- \[\underline{z} = {\rm arg} \min_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C} } \hspace{0.1cm} d_{\rm H}(\underline{y} \hspace{0.05cm}, \hspace{0.1cm}\underline{x}_{\hspace{0.03cm}i})\hspace{0.05cm}, \hspace{0.2cm} \underline{y} \in {\rm GF}(2^n) \hspace{0.05cm}, \hspace{0.2cm}\underline{x}_{\hspace{0.03cm}i}\in {\rm GF}(2^n) \hspace{0.05cm}.\]
Anwendungen der ML/BSC–Entscheidung finden Sie auf den folgenden Seiten:
- "Single Parity–check Code" $\rm (SPC)$
- "Wiederholungscode" $($englisch: "Repetition Code", $\rm RC)$.
Maximum-Likelihood–Entscheidung beim AWGN–Kanal
Das AWGN–Modell für einen $(n, k)$–Blockcode unterscheidet sich vom Modell auf der ersten Kapitelseite dadurch, dass für $x$, $\tilde{x}$ und $y$ nun die entsprechenden Vektoren $\underline{x}$, $\underline{\tilde{x}}$ und $\underline{y}$ verwendet werden müssen, jeweils bestehend aus $n$ Elementen.
Die Schritte zur Herleitung des Maximum–Likelihood–Entscheiders bei AWGN werden nachfolgend nur stichpunktartig angegeben:
- Der AWGN–Kanal ist per se gedächtnislos (hierfür steht das „White” im Namen). Für die bedingte Wahrscheinlichkeitsdichtefunktion kann somit geschrieben werden:
- \[f( \underline{y} \hspace{0.05cm}|\hspace{0.05cm} \underline{\tilde{x}} ) = \prod\limits_{l=1}^{n} f( y_l \hspace{0.05cm}|\hspace{0.05cm} \tilde{x}_l ) \hspace{0.05cm}.\]
- Die bedingte WDF ist für jedes einzelne Codeelement $(l = 1, \hspace{0.05cm}\text{...} \hspace{0.05cm}, n)$ "gaußisch". Damit genügt auch die gesamte WDF einer (eindimensionalen) Gaußverteilung:
- \[f({y_l \hspace{0.03cm}| \hspace{0.03cm}\tilde{x}_l }) = \frac {1}{\sqrt{2\pi} \cdot \sigma } \cdot \exp \left [ - \frac {(y_l - \tilde{x}_l)^2}{2\sigma^2} \right ]\hspace{0.3cm} \Rightarrow \hspace{0.3cm} f( \underline{y} \hspace{0.05cm}|\hspace{0.05cm} \underline{\tilde{x}} ) = \frac {1}{(2\pi)^{n/2} \cdot \sigma^n } \cdot \exp \left [ - \frac {1}{2\sigma^2} \cdot \sum_{l=1}^{n} \hspace{0.2cm}(y_l - \tilde{x}_l)^2 \right ] \hspace{0.05cm}.\]
- Da $\underline{y}$ nun nicht mehr wie beim BSC–Modell wertdiskret ist, sondern wertkontinuierlich, müssen jetzt nach der ML–Entscheidungsregel Wahrscheinlichkeitsdichten untersucht werden und nicht mehr Wahrscheinlichkeiten. Das optimale Ergebnis lautet:
- \[\underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} f( \underline{y} \hspace{0.05cm}|\hspace{0.05cm} \underline{\tilde{x}}_i )\hspace{0.05cm}, \hspace{0.5cm} \underline{y} \in R^n\hspace{0.05cm}, \hspace{0.2cm}\underline{x}_{\hspace{0.03cm}i}\in {\rm GF}(2^n) \hspace{0.05cm}.\]
- In der Algebra bezeichnet man den Abstand zweier Punkte $\underline{y}$ und $\underline{\tilde{x}}$ im $n$–dimensionalen Raum als die Euklidische Distanz, benannt nach dem griechischen Mathematiker Euklid, der im dritten Jahrhundert vor Christus lebte:
- \[d_{\rm E}(\underline{y} \hspace{0.05cm}, \hspace{0.1cm}\underline{\tilde{x}}) = \sqrt{\sum_{l=1}^{n} \hspace{0.2cm}(y_l - \tilde{x}_l)^2}\hspace{0.05cm},\hspace{0.8cm} \underline{y} \in R^n\hspace{0.05cm}, \hspace{0.2cm}\underline{x}_{\hspace{0.03cm}i}\in \mathcal{C} \hspace{0.05cm}.\]
- Damit lautet die ML–Entscheidungsregel beim AWGN–Kanal für einen jeden Blockcode unter Berücksichtigung der Tatsache, dass der erste Faktor der WDF $f( \underline{y} \hspace{0.05cm}|\hspace{0.05cm} \underline{\tilde{x}_i} )$ konstant ist:
- \[\underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} \exp \left [ - \frac {d_{\rm E}(\underline{y} \hspace{0.05cm}, \hspace{0.1cm}\underline{\tilde{x}}_i)}{2\sigma^2} \right ]\hspace{0.05cm}, \hspace{0.8cm} \underline{y} \in R^n\hspace{0.05cm}, \hspace{0.2cm}\underline{x}_{\hspace{0.03cm}i}\in {\rm GF}(2^n) \hspace{0.05cm}.\]
Nach einigen weiteren Zwischenschritten kommt man zum Ergebnis:
$\text{Maximum–Likelihood-Entscheidung beim AWGN-Kanal:}$
Wähle von den $2^k$ zulässigen Codeworten $\underline{x}_{\hspace{0.03cm}i}$ dasjenige mit der kleinsten Euklidischen Distanz $d_{\rm E}(\underline{y} \hspace{0.05cm}, \hspace{0.1cm}\underline{x}_{\hspace{0.03cm}i})$ zum Empfangsvektor $\underline{y}$ aus:
- \[\underline{z} = {\rm arg} \min_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C} } \hspace{0.1cm} d_{\rm E}(\underline{y} \hspace{0.05cm}, \hspace{0.1cm}\underline{x}_{\hspace{0.03cm}i})\hspace{0.05cm}, \hspace{0.8cm} \underline{y} \in R^n\hspace{0.05cm}, \hspace{0.2cm}\underline{x}_{\hspace{0.03cm}i}\in {\rm GF}(2^n) \hspace{0.05cm}.\]
Aufgaben zum Kapitel
Aufgabe 1.3: Kanalmodelle BSC–BEC–BSEC–AWGN
Aufgabe 1.4: Maximum–Likelihood–Entscheidung