Applets:Periodendauer periodischer Signale: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(50 dazwischenliegende Versionen von 3 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
Wir bieten hier zwei Applets zur gleichen Thematik mit unterschiedlichem Layout an:
+
{{LntAppletLinkDeEn|signalPeriod|signalPeriod_en}}
  
{{LntAppletLink|periode|Applet-Variante 1 in neuem Tab öffnen}}     {{LntAppletLink|periodeS|Applet-Variante 2 in neuem Tab öffnen}}
 
  
 
==Programmbeschreibung==
 
==Programmbeschreibung==
Dieses Applet beschreibt ...
+
<br>
Dargestellt werden impulsförmige symmetrische Zeitsignale &nbsp; &rArr; &nbsp; &bdquo;Impulse&rdquo; $x(t)$ und die dazugehörigen Spektralfunktionen $X(f)$, nämlich
+
Dieses Applet zeichnet den Verlauf und berechnet die Periodendauer&nbsp; $T_0$&nbsp; der periodischen Funktion
*Gaußimpuls (englisch: ''Gaussian pulse''),
+
:$$x(t) = A_1\cdot \cos\left(2\pi f_1\cdot t- \varphi_1\right)+A_2\cdot \cos\left(2\pi f_2\cdot t- \varphi_2\right).$$
*Rechteckimpuls  (englisch: ''Rectangular pulse''),
 
*Dreieckimpuls  (englisch: ''Triangular pulse''),
 
*Trapezimpuls  (englisch: ''Trapezoidal pulse''),
 
*Cosinus&ndash;Rolloff&ndash;Impuls  (englisch: ''Cosine-rolloff pulse'').
 
  
 +
Bitte beachten Sie:
 +
*Die Phasen&nbsp; $\varphi_i$&nbsp; sind hier im Bogenmaß einzusetzen.&nbsp; Umrechnung aus dem Eingabewert: &nbsp;
 +
:$$\varphi_i \text{[im Bogenmaß]} =\varphi_i \text{[in Grad]}/360 \cdot 2\pi.$$
 +
*Ausgegeben werden auch der Maximalwert&nbsp; $x_{\rm max}$&nbsp; und ein Signalwert&nbsp; $x(t_*)$&nbsp; zu einer vorgebbaren Zeit&nbsp; $t_*$.
 +
*Das aufzurufende Applet verwendet die englischen Begriffe im Gegensatz zu dieser deutschen Beschreibung.
  
Das aufzurufende Applet verwendet die englischen Begriffe im Gegensatz zu dieser deutschen Beschreibung. Die englische Beschreibung finden Sie unter [[Applets:Pulses_%26_Spectra|Pulses & Spectra]].
 
  
<p>
 
{{BlaueBox|TEXT=
 
<B style="font-size:18px">Funktion:</B>
 
$$x(t) = A_1\cdot cos\Big(2\pi f_1\cdot t- \frac{2\pi}{360}\cdot \varphi_1\Big)+A_2\cdot cos\Big(2\pi f_2\cdot t- \frac{2\pi}{360}\cdot \varphi_2\Big)$$
 
}}
 
</p>
 
  
 
==Theoretischer Hintergrund==
 
==Theoretischer Hintergrund==
 +
<br>
 +
Ein ''periodisches Signal''&nbsp; $x(t)$&nbsp; liegt genau dann vor, wenn dieses nicht konstant ist und für alle beliebigen Werte von&nbsp; $t$&nbsp; und alle ganzzahligen Werte von&nbsp; $i$&nbsp; mit einem geeigneten&nbsp; $T_{0}$&nbsp; gilt: &nbsp; $x(t+i\cdot T_{0}) = x(t).$
 +
*Man bezeichnet&nbsp; $T_0$&nbsp; als die&nbsp; '''Periodendauer'''&nbsp; und&nbsp;  $f_0 = 1/T_0$&nbsp; als die&nbsp; '''Grundfrequenz'''.
 +
 +
*Bei einer harmonischen Schwingung&nbsp; $x_1(t) = A_1\cdot \cos\left(2\pi f_1\cdot t- \varphi_1\right)$&nbsp; gilt&nbsp; $f_0 = f_1$&nbsp; und&nbsp; $T_0 = 1/f_1$,&nbsp; unabhängig von der Phase&nbsp; $\varphi_1$&nbsp; und der Amplitude&nbsp; $A_1 \ne 0$.
 +
 +
 +
{{BlaueBox|TEXT= 
 +
$\text{Berechnungsvorschrift:}$&nbsp; Setzt sich das periodisches Signal&nbsp; $x(t)$&nbsp; wie in diesem Applet aus zwei Anteilen&nbsp; $x_1(t)$&nbsp; und&nbsp;  $x_2(t)$&nbsp; zusammen, dann gilt mit&nbsp; $A_1 \ne 0$,&nbsp; $f_1 \ne 0$,&nbsp; $A_2 \ne 0$,&nbsp; $f_2 \ne 0$&nbsp; für Grundfrequenz und Periodendauer:
 +
 +
:$$f_0 = {\rm ggT}(f_1, \ f_2) \hspace{0.3cm} \Rightarrow \hspace{0.3cm}T_0 = 1/f_0.$$
 +
Hierbei bezeichnet&nbsp; $\rm ggT$&nbsp; den '''größten gemeinsamen Teiler'''.}}
 +
 +
 +
{{GraueBox|TEXT= 
 +
$\text{Beispiele:}$ &nbsp; Im Folgenden bezeichnen&nbsp; $f_0'$,&nbsp; $f_1'$&nbsp; und $f_2'$&nbsp; jeweils auf $1\ \rm kHz$ normierte Signalfrequenzen:
 +
 +
'''(a)''' &nbsp; $f_1' = 1.0$, &nbsp; $f_2' = 3.0$ &nbsp; &rArr; &nbsp; $f_0' = {\rm ggt}(1.0, \ 3.0) = 1.0$ &nbsp; &rArr; &nbsp; $T_0 =  1.0\ \rm ms$;
 +
 +
'''(b)''' &nbsp; $f_1' = 1.0$, &nbsp; $f_2' = 3.5$ &nbsp; &rArr; &nbsp; $f_0' = {\rm ggt}(1.0, \ 3.5)= 0.5$ &nbsp; &rArr; &nbsp; $T_0 =  2.0\ \rm ms$;
 +
 +
'''(c)''' &nbsp; $f_1' = 1.0$, &nbsp; $f_2' = 2.5$ &nbsp; &rArr; &nbsp; $f_0' = {\rm ggt}(1.0, \ 2.5) = 0.5$ &nbsp; &rArr; &nbsp; $T_0 =  2.0\ \rm ms$;
 +
 +
'''(d)''' &nbsp; $f_1' = 0.9$, &nbsp; $f_2' = 2.5$ &nbsp; &rArr; &nbsp; $f_0' = {\rm ggt}(0.9, \ 2.5) = 0.1$ &nbsp; &rArr; &nbsp; $T_0 =  10.0 \ \rm ms$;
 +
 +
'''(e)''' &nbsp; $f_2' = \sqrt{2} \cdot f_1' $ &nbsp; &rArr; &nbsp; $f_0' = {\rm ggt}(f_1', \ f_2') \to 0$ &nbsp; &rArr; &nbsp; $T_0 \to \infty$&nbsp; &rArr; &nbsp; Das Signal&nbsp; $x(t)$&nbsp; ist nicht periodisch.}}
 +
 +
 +
$\text{Anmerkung:}$&nbsp; Die Periodendauer könnte auch als&nbsp; '''kleinstes gemeinsames Vielfaches'''&nbsp; $\rm (kgV)$&nbsp; entsprechend&nbsp; $T_0 = {\rm kgV}(T_1, \ T_2)$&nbsp; ermittelt werden:
 +
 +
:'''(c)''' &nbsp; $T_1 = 1.0\ \rm ms$, &nbsp; $T_2 = 0.4\ \rm kHz$ &nbsp; &rArr; &nbsp; $T_0 = {\rm kgV}(1.0, \ 0.4) \ \rm ms =  2.0\ \rm ms$
 +
 +
Bei allen anderen Parameterwerten würde es aber zu numerischen Problemen kommen, zum Beispiel
 +
 +
:'''(a)''' &nbsp; $T_1 = 1.0\ \rm ms$ und $T_2 = 0.333\text{...} \ \rm ms$ besitzen aufgrund der begrenzten Darstellung reeller Zahlen kein kleinstes gemeinsames Vielfaches.
 +
 +
==Versuchsdurchführung==
 +
<br>
 +
*Wählen Sie zunächst die Nummer&nbsp; $(1,\ 2$, ... $)$&nbsp; der zu bearbeitenden Aufgabe.&nbsp; Die Nummer&nbsp; $0$&nbsp; entspricht &bdquo;Reset&rdquo;:&nbsp; Einstellung wie beim Programmstart.
 +
*Eine Aufgabenbeschreibung wird angezeigt.&nbsp; Parameterwerte sind angepasst.&nbsp; Lösung nach Drücken von &bdquo;Musterlösung&rdquo;.
 +
*$A_1'$&nbsp; und&nbsp; $A_2'$&nbsp;  bezeichnen hier die auf&nbsp; $1\ \rm V$&nbsp; normierten  Signalamplituden.&nbsp; $ f_0'$,&nbsp; $f_1'$&nbsp; und&nbsp; $f_2'$&nbsp; sind die auf&nbsp; $1\ \rm kHz$&nbsp; normierten Frequenzen.
 +
 +
 +
{{BlaueBox|TEXT= 
 +
'''(1)''' &nbsp; Es gelte&nbsp; $A_1' = 1.0, \ A_2' = 0.5, \ f_1' = 2.0, \ f_2' = 2.5, \ \varphi_1 = 0^\circ \ \varphi_2 = 90^\circ\text{.}$&nbsp; Wie groß ist die Periodendauer&nbsp; $T_0$?}}
 +
 +
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Die Periodendauer ist&nbsp; $T_0 = 2.0 \ \rm ms$&nbsp; wegen&nbsp; ${\rm ggt}(2.0, 2.5) = 0.5$.
 +
 +
{{BlaueBox|TEXT= 
 +
'''(2)''' &nbsp; Variieren Sie&nbsp;  $\varphi_1$&nbsp; und&nbsp; $\varphi_2$&nbsp; im gesamten möglichen Bereich $\pm 180^\circ\text{.}$&nbsp; Wie wirkt sich dies auf die Periodendauer&nbsp; $T_0$&nbsp; aus?}}
 +
 +
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Die Periodendauer&nbsp; $T_0 = 2.0 \ \rm ms$&nbsp; bleibt für alle&nbsp;  $\varphi_1$&nbsp; und&nbsp; $\varphi_2$&nbsp; erhalten.
 +
 +
{{BlaueBox|TEXT= 
 +
'''(3)''' &nbsp; Wählen Sie die Voreinstellung  &nbsp; &rArr; &nbsp; &bdquo;Recall Parameters&rdquo;.&nbsp; Variieren Sie&nbsp; $A_1'$&nbsp; im gesamten möglichen Bereich&nbsp; $0 \le A_1' \le 1$.}}
 +
 +
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Die Periodendauer&nbsp; $T_0 = 2.0 \ \rm ms$&nbsp; bleibt erhalten mit Ausnahme von&nbsp; $A_1' =0$.&nbsp; In letzerem Fall ist&nbsp; $T_0 = 0.4 \ \rm ms$.
 +
 +
{{BlaueBox|TEXT= 
 +
'''(4)''' &nbsp; Wählen Sie die Voreinstellung  &nbsp; &rArr; &nbsp; &bdquo;Recall Parameters&rdquo; und variieren Sie&nbsp; $f_2' $?&nbsp; Hat dies Auswirkungen auf&nbsp; $T_0$?&nbsp; Welcher Wert ergibt sich für&nbsp; $f_2' = 0.2$.}}
 +
 +
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Die Periodendauer springt hin und her.&nbsp; Für&nbsp; $f_2' = 0.2$&nbsp; ergibt sich&nbsp; $T_0 = 5.0 \ \rm ms$ &nbsp; wegen &nbsp; ${\rm ggt}(2.0, 0.2) = 0.2$.
 +
 +
{{BlaueBox|TEXT= 
 +
'''(5)''' &nbsp; Es gelte&nbsp; $A_1' = 1.0, \ A_2' = 0.5, \ f_1' = 0.2, \ f_2' = 2.5, \ \varphi_1 = 0^\circ \ \varphi_2 = 90^\circ\text{.}$&nbsp;  Wie groß ist&nbsp; $T_0$?&nbsp; Speichern Sie diese Einstellung mit &bdquo;Store  Parameters&rdquo;.}}
 +
 +
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Die Periodendauer ist&nbsp; $T_0 = 10.0 \ \rm ms$&nbsp; wegen&nbsp; ${\rm ggt}(0.2, 2.5) = 0.1$.
 +
 +
{{BlaueBox|TEXT= 
 +
'''(6)''' &nbsp; Wählen Sie die letzte Einstellung  &nbsp; &rArr; &nbsp; &bdquo;Recall Parameters&rdquo; und ändern Sie&nbsp; $f_2' = 0.6$.&nbsp;  Speichern Sie diese Einstellung mit &bdquo;Store Parameters&rdquo;:}}
 +
 +
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Die Periodendauer ist&nbsp; $T_0 = 5.0 \ \rm ms$&nbsp; wegen&nbsp; ${\rm ggt}(0.2,0.6) = 0.2$.
 +
 +
{{BlaueBox|TEXT= 
 +
'''(7)''' &nbsp; Wie groß ist bei gleicher Einstellung der maximale Signalwert&nbsp; $x_{\rm max}\text{?}$}}
 +
 +
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$&nbsp;$x_{\rm max} =x(t_* + i \cdot T_0) = 1.38 \ {\rm V} < A_1 + A_2$&nbsp; mit&nbsp; $t_* = 0.3 \ \rm ms$&nbsp; und&nbsp; $T_0 = 5.0 \ \rm ms$.
 +
{{BlaueBox|TEXT= 
 +
'''(8)''' &nbsp; Welcher Unterschied ergibt sich mit&nbsp; $\varphi_2 = 0^\circ \hspace{0.1cm}\Rightarrow\hspace{0.1cm}$ Summe zweier Cosinusschwingungen?}}
 +
 +
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$&nbsp;$t_* = 0$,&nbsp; $T_0 = 5.0 \ \rm ms$&nbsp; &rArr; &nbsp; $x_{\rm max}  =x(t_* + i \cdot T_0) = 1.5 \ {\rm V}=A_1 + A_2$.
  
 +
{{BlaueBox|TEXT= 
 +
'''(9)''' &nbsp; Nun gelte&nbsp; $\varphi_1 = \varphi_2 = 90^\circ \hspace{0.1cm}\Rightarrow\hspace{0.1cm}$ Summe zweier Sinusschwingungen.&nbsp; Wie groß ist hier der maximale Signalwert&nbsp; $x_{\rm max}\text{?}$}}
  
==Zur Handhabung Applet-Variante 1==
+
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Der maximale Signalwert ist nun&nbsp; $x_{\rm max} = 1.07 \ {\rm V} < A_1 + A_2$.&nbsp;Dieser Wert ergibt sich mit&nbsp; $T_0 = 5.0 \ \rm ms$&nbsp; sowie&nbsp; $t_* = 0.6 \ \rm ms$&nbsp; bzw.&nbsp; $t_* = 1.9 \ \rm ms$.
  
  
==Zur Handhabung Applet-Variante 2==
 
  
 +
==Zur Handhabung der Applet-Variante 1==
  
 +
[[Datei:Anleitung_Periodendauer.png|right|frame|Bildschirmabzug der englischen Version]]
  
 +
&nbsp; &nbsp; '''(A)''' &nbsp; &nbsp; Parametereingabe für Schwingung 1
  
 +
&nbsp; &nbsp; '''(B)''' &nbsp; &nbsp; Parametereingabe für Schwingung 2 und der Zeit&nbsp; $t_*$.
  
==Über die Autoren==
+
&nbsp; &nbsp; '''(C)''' &nbsp; &nbsp; Numerikausgabe des Hauptergebnisses&nbsp; $T_0$;&nbsp; graphische Verdeutlichung durch rote Linie
Dieses interaktive Berechnungstool wurde am [http://www.lnt.ei.tum.de/startseite Lehrstuhl für Nachrichtentechnik] der [https://www.tum.de/ Technischen Universität München] konzipiert und realisiert.
+
 
*Die erste Version wurde 2004 von [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Ji_Li_.28Bachelorarbeit_EI_2003.2C_Diplomarbeit_EI_2005.29|Ji Li]] im Rahmen ihrer Diplomarbeit mit &bdquo;FlashMX&ndash;Actionscript&rdquo; erstellt (Betreuer: [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]] ).
+
&nbsp; &nbsp; '''(D)''' &nbsp; &nbsp; Abspeichern von Parametersätzen
*2017 wurde dieses Programm  von [[David Jobst]] im Rahmen seiner Ingenieurspraxis (Betreuer: [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Tasn.C3.A1d_Kernetzky.2C_M.Sc._.28am_LNT_seit_2014.29|Tasnád Kernetzky]]auf  &bdquo;HTML5&rdquo; umgesetzt und neu gestaltet &nbsp; &rArr; &nbsp; Applet-Variante 1.
+
 
*Parallel dazu erarbeitete [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Bastian_Siebenwirth_.28Bachelorarbeit_LB_2017.29|Bastian Siebenwirth]] im Rahmen seiner Bachelorarbeit (Betreuer: [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]]die Applet-Variante 2 &ndash; ebenfalls unter &bdquo;HTML5&rdquo;.
+
&nbsp; &nbsp; '''(E)''' &nbsp; &nbsp; Zurückholen von Parametersätzen
 +
 
 +
&nbsp; &nbsp; '''(F)''' &nbsp; &nbsp; Ausgabe von&nbsp; $x_{\rm max}$&nbsp; und der Signalwerte&nbsp; $x(t_*) = x(t_* + T_0)= x(t_* + 2T_0)$
 +
 
 +
&nbsp; &nbsp; '''(G)''' &nbsp; &nbsp; Grafikfeld zur Darstellung der Signale
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; Die Signalwerte&nbsp; $x(t_*) = x(t_* + T_0)= x(t_* + 2T_0)$&nbsp; werden durch grüne Punkte markiert
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; Am unteren rechten Grafikrand finden Sie folgende Buttos:  
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; '''(1)''' &nbsp; &nbsp; Zoom&ndash;Funktionen &bdquo;$+$&rdquo; (Vergrößern), &bdquo;$-$&rdquo; (Verkleinern) und $\rm o$ (Zurücksetzen)
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; '''(2)''' &nbsp; &nbsp; Verschieben mit &bdquo;$\leftarrow$&rdquo; (Ausschnitt nach links, Ordinate nach rechts), &bdquo;$\uparrow$&rdquo; &bdquo;$\downarrow$&rdquo; und &bdquo;$\rightarrow$&rdquo;
 +
 
 +
&nbsp; &nbsp; '''(H)''' &nbsp; &nbsp; Aufgabenauswahl entsprechend der Aufgabennummer
 +
<br><br>
 +
In allen Applets oben rechts:&nbsp; &nbsp; Veränderbare grafische Oberflächengestaltung  &nbsp; &rArr; &nbsp; '''Theme''':
 +
* Dark: &nbsp; schwarzer Hintergrund&nbsp; (wird von den Autoren empfohlen)
 +
*  Bright: &nbsp; weißer Hintergrund&nbsp; (empfohlen für Beamer und Ausdrucke)
 +
* Deuteranopia: &nbsp; für Nutzer mit ausgeprägter Grün&ndash;Sehschwäche
 +
*  Protanopia: &nbsp; für Nutzer mit ausgeprägter Rot&ndash;Sehschwäche
  
  
{{LntAppletLink|periode}}
+
<br clear = all>
  
{{LntAppletLink|periodeS|Alternatives Applet in neuem Tab öffnen}}
+
==Über die Autoren==
 +
Dieses interaktive Berechnungstool  wurde am&nbsp; [http://www.lnt.ei.tum.de/startseite Lehrstuhl für Nachrichtentechnik]&nbsp; der&nbsp; [https://www.tum.de/ Technischen Universität München]&nbsp; konzipiert und realisiert.
 +
*Die erste Version wurde 2004 von&nbsp; [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Ji_Li_.28Bachelorarbeit_EI_2003.2C_Diplomarbeit_EI_2005.29|Ji Li]]&nbsp; im Rahmen ihrer Diplomarbeit mit &bdquo;FlashMX&ndash;Actionscript&rdquo; erstellt&nbsp; (Betreuer:&nbsp; [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]] ).
 +
*2017 wurde dieses Programm  von&nbsp; [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#David_Jobst_.28Ingenieurspraxis_Math_2017.29|David Jobst]]&nbsp; im Rahmen seiner Ingenieurspraxis&nbsp; (Betreuer:&nbsp; [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_LÜT-Angehörige#Dr.-Ing._Tasn.C3.A1d_Kernetzky_.28bei_L.C3.9CT_von_2014-2022.29|Tasnád Kernetzky]])&nbsp;  auf  &bdquo;HTML5&rdquo; umgesetzt und neu gestaltet &nbsp; &rArr; &nbsp; Applet-Variante 1.&nbsp; Parallel dazu erarbeitete&nbsp; [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Bastian_Siebenwirth_.28Bachelorarbeit_LB_2017.29|Bastian Siebenwirth]]&nbsp; im Rahmen seiner Bachelorarbeit&nbsp; (Betreuer:&nbsp; [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]])&nbsp;  die HTML5-Variante 2.
 +
 
 +
==Nochmalige Aufrufmöglichkeit der Applets in neuem Fenster==
 +
Wir bieten hier zwei Applets zur gleichen Thematik mit unterschiedlichem Layout an:
  
[[Category:Applets|^Periodendauer^]]
+
{{LntAppletLink|signalPeriod|Applet-Variante 1 in neuem Tab öffnen}} &nbsp; &nbsp; {{LntAppletLink|signalPeriodS_en|Applet-Variante 2 in neuem Tab öffnen}}

Aktuelle Version vom 26. Oktober 2023, 11:05 Uhr

Applet in neuem Tab öffnen   Open English Version


Programmbeschreibung


Dieses Applet zeichnet den Verlauf und berechnet die Periodendauer  $T_0$  der periodischen Funktion

$$x(t) = A_1\cdot \cos\left(2\pi f_1\cdot t- \varphi_1\right)+A_2\cdot \cos\left(2\pi f_2\cdot t- \varphi_2\right).$$

Bitte beachten Sie:

  • Die Phasen  $\varphi_i$  sind hier im Bogenmaß einzusetzen.  Umrechnung aus dem Eingabewert:  
$$\varphi_i \text{[im Bogenmaß]} =\varphi_i \text{[in Grad]}/360 \cdot 2\pi.$$
  • Ausgegeben werden auch der Maximalwert  $x_{\rm max}$  und ein Signalwert  $x(t_*)$  zu einer vorgebbaren Zeit  $t_*$.
  • Das aufzurufende Applet verwendet die englischen Begriffe im Gegensatz zu dieser deutschen Beschreibung.


Theoretischer Hintergrund


Ein periodisches Signal  $x(t)$  liegt genau dann vor, wenn dieses nicht konstant ist und für alle beliebigen Werte von  $t$  und alle ganzzahligen Werte von  $i$  mit einem geeigneten  $T_{0}$  gilt:   $x(t+i\cdot T_{0}) = x(t).$

  • Man bezeichnet  $T_0$  als die  Periodendauer  und  $f_0 = 1/T_0$  als die  Grundfrequenz.
  • Bei einer harmonischen Schwingung  $x_1(t) = A_1\cdot \cos\left(2\pi f_1\cdot t- \varphi_1\right)$  gilt  $f_0 = f_1$  und  $T_0 = 1/f_1$,  unabhängig von der Phase  $\varphi_1$  und der Amplitude  $A_1 \ne 0$.


$\text{Berechnungsvorschrift:}$  Setzt sich das periodisches Signal  $x(t)$  wie in diesem Applet aus zwei Anteilen  $x_1(t)$  und  $x_2(t)$  zusammen, dann gilt mit  $A_1 \ne 0$,  $f_1 \ne 0$,  $A_2 \ne 0$,  $f_2 \ne 0$  für Grundfrequenz und Periodendauer:

$$f_0 = {\rm ggT}(f_1, \ f_2) \hspace{0.3cm} \Rightarrow \hspace{0.3cm}T_0 = 1/f_0.$$

Hierbei bezeichnet  $\rm ggT$  den größten gemeinsamen Teiler.


$\text{Beispiele:}$   Im Folgenden bezeichnen  $f_0'$,  $f_1'$  und $f_2'$  jeweils auf $1\ \rm kHz$ normierte Signalfrequenzen:

(a)   $f_1' = 1.0$,   $f_2' = 3.0$   ⇒   $f_0' = {\rm ggt}(1.0, \ 3.0) = 1.0$   ⇒   $T_0 = 1.0\ \rm ms$;

(b)   $f_1' = 1.0$,   $f_2' = 3.5$   ⇒   $f_0' = {\rm ggt}(1.0, \ 3.5)= 0.5$   ⇒   $T_0 = 2.0\ \rm ms$;

(c)   $f_1' = 1.0$,   $f_2' = 2.5$   ⇒   $f_0' = {\rm ggt}(1.0, \ 2.5) = 0.5$   ⇒   $T_0 = 2.0\ \rm ms$;

(d)   $f_1' = 0.9$,   $f_2' = 2.5$   ⇒   $f_0' = {\rm ggt}(0.9, \ 2.5) = 0.1$   ⇒   $T_0 = 10.0 \ \rm ms$;

(e)   $f_2' = \sqrt{2} \cdot f_1' $   ⇒   $f_0' = {\rm ggt}(f_1', \ f_2') \to 0$   ⇒   $T_0 \to \infty$  ⇒   Das Signal  $x(t)$  ist nicht periodisch.


$\text{Anmerkung:}$  Die Periodendauer könnte auch als  kleinstes gemeinsames Vielfaches  $\rm (kgV)$  entsprechend  $T_0 = {\rm kgV}(T_1, \ T_2)$  ermittelt werden:

(c)   $T_1 = 1.0\ \rm ms$,   $T_2 = 0.4\ \rm kHz$   ⇒   $T_0 = {\rm kgV}(1.0, \ 0.4) \ \rm ms = 2.0\ \rm ms$

Bei allen anderen Parameterwerten würde es aber zu numerischen Problemen kommen, zum Beispiel

(a)   $T_1 = 1.0\ \rm ms$ und $T_2 = 0.333\text{...} \ \rm ms$ besitzen aufgrund der begrenzten Darstellung reeller Zahlen kein kleinstes gemeinsames Vielfaches.

Versuchsdurchführung


  • Wählen Sie zunächst die Nummer  $(1,\ 2$, ... $)$  der zu bearbeitenden Aufgabe.  Die Nummer  $0$  entspricht „Reset”:  Einstellung wie beim Programmstart.
  • Eine Aufgabenbeschreibung wird angezeigt.  Parameterwerte sind angepasst.  Lösung nach Drücken von „Musterlösung”.
  • $A_1'$  und  $A_2'$  bezeichnen hier die auf  $1\ \rm V$  normierten Signalamplituden.  $ f_0'$,  $f_1'$  und  $f_2'$  sind die auf  $1\ \rm kHz$  normierten Frequenzen.


(1)   Es gelte  $A_1' = 1.0, \ A_2' = 0.5, \ f_1' = 2.0, \ f_2' = 2.5, \ \varphi_1 = 0^\circ \ \varphi_2 = 90^\circ\text{.}$  Wie groß ist die Periodendauer  $T_0$?

$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Die Periodendauer ist  $T_0 = 2.0 \ \rm ms$  wegen  ${\rm ggt}(2.0, 2.5) = 0.5$.

(2)   Variieren Sie  $\varphi_1$  und  $\varphi_2$  im gesamten möglichen Bereich $\pm 180^\circ\text{.}$  Wie wirkt sich dies auf die Periodendauer  $T_0$  aus?

$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Die Periodendauer  $T_0 = 2.0 \ \rm ms$  bleibt für alle  $\varphi_1$  und  $\varphi_2$  erhalten.

(3)   Wählen Sie die Voreinstellung   ⇒   „Recall Parameters”.  Variieren Sie  $A_1'$  im gesamten möglichen Bereich  $0 \le A_1' \le 1$.

$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Die Periodendauer  $T_0 = 2.0 \ \rm ms$  bleibt erhalten mit Ausnahme von  $A_1' =0$.  In letzerem Fall ist  $T_0 = 0.4 \ \rm ms$.

(4)   Wählen Sie die Voreinstellung   ⇒   „Recall Parameters” und variieren Sie  $f_2' $?  Hat dies Auswirkungen auf  $T_0$?  Welcher Wert ergibt sich für  $f_2' = 0.2$.

$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Die Periodendauer springt hin und her.  Für  $f_2' = 0.2$  ergibt sich  $T_0 = 5.0 \ \rm ms$   wegen   ${\rm ggt}(2.0, 0.2) = 0.2$.

(5)   Es gelte  $A_1' = 1.0, \ A_2' = 0.5, \ f_1' = 0.2, \ f_2' = 2.5, \ \varphi_1 = 0^\circ \ \varphi_2 = 90^\circ\text{.}$  Wie groß ist  $T_0$?  Speichern Sie diese Einstellung mit „Store Parameters”.

$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Die Periodendauer ist  $T_0 = 10.0 \ \rm ms$  wegen  ${\rm ggt}(0.2, 2.5) = 0.1$.

(6)   Wählen Sie die letzte Einstellung   ⇒   „Recall Parameters” und ändern Sie  $f_2' = 0.6$.  Speichern Sie diese Einstellung mit „Store Parameters”:

$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Die Periodendauer ist  $T_0 = 5.0 \ \rm ms$  wegen  ${\rm ggt}(0.2,0.6) = 0.2$.

(7)   Wie groß ist bei gleicher Einstellung der maximale Signalwert  $x_{\rm max}\text{?}$

$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$ $x_{\rm max} =x(t_* + i \cdot T_0) = 1.38 \ {\rm V} < A_1 + A_2$  mit  $t_* = 0.3 \ \rm ms$  und  $T_0 = 5.0 \ \rm ms$.

(8)   Welcher Unterschied ergibt sich mit  $\varphi_2 = 0^\circ \hspace{0.1cm}\Rightarrow\hspace{0.1cm}$ Summe zweier Cosinusschwingungen?

$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$ $t_* = 0$,  $T_0 = 5.0 \ \rm ms$  ⇒   $x_{\rm max} =x(t_* + i \cdot T_0) = 1.5 \ {\rm V}=A_1 + A_2$.

(9)   Nun gelte  $\varphi_1 = \varphi_2 = 90^\circ \hspace{0.1cm}\Rightarrow\hspace{0.1cm}$ Summe zweier Sinusschwingungen.  Wie groß ist hier der maximale Signalwert  $x_{\rm max}\text{?}$

$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Der maximale Signalwert ist nun  $x_{\rm max} = 1.07 \ {\rm V} < A_1 + A_2$. Dieser Wert ergibt sich mit  $T_0 = 5.0 \ \rm ms$  sowie  $t_* = 0.6 \ \rm ms$  bzw.  $t_* = 1.9 \ \rm ms$.


Zur Handhabung der Applet-Variante 1

Bildschirmabzug der englischen Version

    (A)     Parametereingabe für Schwingung 1

    (B)     Parametereingabe für Schwingung 2 und der Zeit  $t_*$.

    (C)     Numerikausgabe des Hauptergebnisses  $T_0$;  graphische Verdeutlichung durch rote Linie

    (D)     Abspeichern von Parametersätzen

    (E)     Zurückholen von Parametersätzen

    (F)     Ausgabe von  $x_{\rm max}$  und der Signalwerte  $x(t_*) = x(t_* + T_0)= x(t_* + 2T_0)$

    (G)     Grafikfeld zur Darstellung der Signale

                  Die Signalwerte  $x(t_*) = x(t_* + T_0)= x(t_* + 2T_0)$  werden durch grüne Punkte markiert

                  Am unteren rechten Grafikrand finden Sie folgende Buttos:

                  (1)     Zoom–Funktionen „$+$” (Vergrößern), „$-$” (Verkleinern) und $\rm o$ (Zurücksetzen)

                  (2)     Verschieben mit „$\leftarrow$” (Ausschnitt nach links, Ordinate nach rechts), „$\uparrow$” „$\downarrow$” und „$\rightarrow$”

    (H)     Aufgabenauswahl entsprechend der Aufgabennummer

In allen Applets oben rechts:    Veränderbare grafische Oberflächengestaltung   ⇒   Theme:

  • Dark:   schwarzer Hintergrund  (wird von den Autoren empfohlen)
  • Bright:   weißer Hintergrund  (empfohlen für Beamer und Ausdrucke)
  • Deuteranopia:   für Nutzer mit ausgeprägter Grün–Sehschwäche
  • Protanopia:   für Nutzer mit ausgeprägter Rot–Sehschwäche



Über die Autoren

Dieses interaktive Berechnungstool wurde am  Lehrstuhl für Nachrichtentechnik  der  Technischen Universität München  konzipiert und realisiert.

  • Die erste Version wurde 2004 von  Ji Li  im Rahmen ihrer Diplomarbeit mit „FlashMX–Actionscript” erstellt  (Betreuer:  Günter Söder ).
  • 2017 wurde dieses Programm von  David Jobst  im Rahmen seiner Ingenieurspraxis  (Betreuer:  Tasnád Kernetzky)  auf „HTML5” umgesetzt und neu gestaltet   ⇒   Applet-Variante 1.  Parallel dazu erarbeitete  Bastian Siebenwirth  im Rahmen seiner Bachelorarbeit  (Betreuer:  Günter Söder)  die HTML5-Variante 2.

Nochmalige Aufrufmöglichkeit der Applets in neuem Fenster

Wir bieten hier zwei Applets zur gleichen Thematik mit unterschiedlichem Layout an:

Applet-Variante 1 in neuem Tab öffnen     Applet-Variante 2 in neuem Tab öffnen