Signaldarstellung/Zeitdiskrete Signaldarstellung: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(47 dazwischenliegende Versionen von 5 Benutzern werden nicht angezeigt)
Zeile 5: Zeile 5:
 
|Nächste Seite=Diskrete Fouriertransformation (DFT)
 
|Nächste Seite=Diskrete Fouriertransformation (DFT)
 
}}
 
}}
 +
 +
== # ÜBERBLICK ZUM FÜNFTEN HAUPTKAPITEL # ==
 +
<br>
 +
Voraussetzung für die systemtheoretische Untersuchung von Digitalsystemen oder für deren Computersimulation ist eine geeignete zeitdiskrete Signalbeschreibung.
 +
 +
Dieses Kapitel verdeutlicht den mathematischen Übergang von zeitkontinuierlichen auf zeitdiskrete Signale, wobei von&nbsp;  [[Signaldarstellung/Fouriertransformation_und_-rücktransformation|Fouriertransformation und  Fourierrücktransformation]]&nbsp;  ausgegangen wird.
 +
 +
Das Kapitel beinhaltet im Einzelnen:
 +
*die Zeit- und Frequenzbereichsdarstellung zeitdiskreter Signale,
 +
*das Abtasttheorem, das bei der Zeitdiskretisierung unbedingt zu beachten ist,
 +
*die Rekonstruktion des Analogsignals aus der zeitdiskreten Repräsentation,
 +
*die Diskrete Fouriertransformation (DFT) und deren Inverse (IDFT),
 +
*die Fehlermöglichkeiten bei Anwendung von DFT und IDFT,
 +
*die Anwendung der Spektralanalyse zur Verbesserung messtechnischer Verfahren, und
 +
*den für eine Rechnerimplementierung besonders geeigneten FFT-Algorithmus.
 +
 +
 +
 +
Weitere Informationen zum Thema sowie Aufgaben, Simulationen und Programmierübungen finden Sie im
 +
 +
*Kapitel 7: &nbsp; &nbsp; Diskrete Fouriertransformation, Programm dft,
 +
*Kapitel 8: &nbsp; &nbsp; Spektralanalyse, Programm stp, und
 +
*Kapitel 12: &nbsp; Pulscodemodulation, Programm pcm
 +
 +
 +
des Praktikums &bdquo;Simulationsmethoden in der Nachrichtentechnik&rdquo;.&nbsp; Diese (ehemalige) LNT-Lehrveranstaltung an der TU München basiert auf
 +
*dem Lehrsoftwarepaket&nbsp; [http://www.lntwww.de/downloads/Sonstiges/Programme/LNTsim.zip LNTsim] &nbsp; &rArr; &nbsp; Link verweist auf die ZIP-Version des Programms,
 +
*der&nbsp; [http://www.lntwww.de/downloads/Sonstiges/Texte/Praktikum_LNTsim_Teil_A.pdf Praktikumsanleitung - Teil A]  &nbsp; &rArr; &nbsp; Link verweist auf die PDF-Version; Kapitel 7: Seite 119-144, Kapitel 8: Seite 145-164, und
 +
*der&nbsp; [http://www.lntwww.de/downloads/Sonstiges/Texte/Praktikum_LNTsim_Teil_B.pdf Praktikumsanleitung - Teil B]  &nbsp; &rArr; &nbsp; Link verweist auf die PDF-Version; Kapitel 12: Seite 271-294.
 +
  
 
==Prinzip und Motivation==
 
==Prinzip und Motivation==
 +
<br>
 +
Viele Nachrichtensignale sind analog und damit  gleichzeitig&nbsp; [[Signaldarstellung/Klassifizierung_von_Signalen#Zeitkontinuierliche_und_zeitdiskrete_Signale|zeitkontinuierlich]]&nbsp; und&nbsp; [[Signaldarstellung/Klassifizierung_von_Signalen#Wertkontinuierliche_und_wertdiskrete_Signale|wertkontinuierlich]].&nbsp; Soll ein solches Analogsignal mittels eines Digitalsystems übertragen werden, so sind folgende Vorverarbeitungsschritte erforderlich:
 +
*die&nbsp; $\text{Abtastung}$&nbsp; des Nachrichtensignals&nbsp; $x(t)$, die zweckmäßigerweise – aber nicht notwendigerweise – zu äquidistanten Zeitpunkten erfolgt &nbsp; &rArr; &nbsp; $\text{Zeitdiskretisierung}$,
 +
*die&nbsp; $\text{Quantisierung}$&nbsp; der Abtastwerte, um so die Anzahl&nbsp; $M$&nbsp; der möglichen Werte auf einen endlichen Wert zu begrenzen  &nbsp; &rArr; &nbsp; $\text{Wertdiskretisierung}$.
 +
  
Die meisten Quellensignale von Nachrichtensystemen sind analog und damit zeitkontinuierlich und gleichzeitig wertkontinuierlich. Soll ein solches Analogsignal mittels eines Digitalsystems übertragen werden, so sind folgende Vorverarbeitungsschritte erforderlich:
+
Die Quantisierung wird erst im Kapitel&nbsp; [[Modulationsverfahren/Pulscodemodulation|Pulscodemodulation]]&nbsp; des Buches „Modulationsverfahren” im Detail behandelt.
*die '''Abtastung''' des zeitkontinuierlichen Nachrichtensignals $x(t)$, die zweckmäßigerweise – aber nicht notwendigerweise – zu äquidistanten Zeitpunkten erfolgt.
 
*die '''Quantisierung''' mit dem Ziel, die wertkontinuierlichen Abtastwerte zu diskretisieren und so die Anzahl $M$ der möglichen Werte auf einen endlichen Wert zu begrenzen.
 
  
Die Quantisierung wird erst im Kapitel 4.1 des Buches „Modulationsverfahren” behandelt.
+
Im Folgenden verwenden wir für die Beschreibung der Abtastung folgende Nomenklatur:
 +
[[Datei:P_ID1120__Sig_T_5_1_S1_neu.png|right|frame|Zur Zeitdiskretisierung des zeitkontinuierlichen Signals&nbsp; $x(t)$]]
  
[[Datei:P_ID1120__Sig_T_5_1_S1_neu.png|250px|right|Zur Zeitdiskretisierung des Zeitsignals]]
+
*Das zeitkontinuierliche Signal sei&nbsp; $x(t)$.
 +
*Das in äquidistanten Abständen&nbsp; $T_{\rm A}$&nbsp; abgetastete Signal sei&nbsp; $x_{\rm A}(t)$.
 +
*Die Laufvariable&nbsp; $\nu$&nbsp; der Abtastung sei&nbsp; [[Signaldarstellung/Zum_Rechnen_mit_komplexen_Zahlen#Reelle_Zahlenmengen|ganzzahlig]]:
 +
:$$\nu \in \mathbb{Z} =  \{\hspace{0.05cm} \text{...}\hspace{0.05cm} , –3, –2, –1, \hspace{0.2cm}0, +1, +2, +3, \text{...} \hspace{0.05cm}\} .$$
 +
*Außerhalb der Abtastzeitpunkte&nbsp; $\nu \cdot T_{\rm A}$&nbsp; gilt stets&nbsp; $x_{\rm A}(t) = 0$.
  
Im Folgenden beschreiben wir die Abtastung in mathematisch exakter Weise, wobei wir folgende Nomenklatur verwenden:
+
*Zu den äquidistanten Abtastzeitpunkten ergibt sich mit der Konstanten&nbsp; $K$:
*Das zeitkontinuierliche Signal sei $x(t)$.
 
*Das in äquidistanten Abständen $T_A$ abgetastete zeitdiskretisierte Signal sei $x_A(t)$.
 
*Außerhalb der Abtastzeitpunkte $ν \cdot T_A$ gilt stets $x_A(t) = 0$.
 
*Dagegen ergibt sich zu den äquidistanten Abtastzeitpunkten mit der Konstanten $K$:
 
 
   
 
   
$$x_{\rm A}(\nu \cdot T_{\rm A}) = K \cdot x(\nu \cdot T_{\rm A})\hspace{0.05cm}.$$
+
:$$x_{\rm A}(\nu \cdot T_{\rm A}) = K \cdot x(\nu \cdot T_{\rm A})\hspace{0.05cm}.$$
  
Die Konstante hängt von der Art der Zeitdiskretisierung ab. Für die obige Skizze gilt $K$ = 1.
+
*Die Konstante hängt von der Art der Zeitdiskretisierung ab.&nbsp; Hier:&nbsp; $K = 1$.
  
  
 
==Zeitbereichsdarstellung==
 
==Zeitbereichsdarstellung==
 +
<br>
 +
{{BlaueBox|TEXT=
 +
$\text{Definition:}$&nbsp; Im gesamten $\rm LNTwww$ soll unter&nbsp; $\text{Abtastung}$&nbsp; die Multiplikation des zeitkontinuierlichen Signals&nbsp; $x(t)$&nbsp; mit dem&nbsp; Diracpuls&nbsp; $p_{\delta}(t)$&nbsp; verstanden werden:
 +
 +
:$$x_{\rm A}(t) = x(t) \cdot p_{\delta}(t)\hspace{0.05cm}.$$}}
  
Im gesamten Lerntutorial soll unter „Abtastung” die Multiplikation des zeitkontinuierlichen Signals $x(t)$ mit dem Diracpuls $p_{\delta}(t)$ verstanden werden:
 
 
$$x_{\rm A}(t) = x(t) \cdot p_{\delta}(t)\hspace{0.05cm}.$$
 
  
Anzumerken ist, dass in der Literatur auch andere Beschreibungsformen gefunden werden. Den Autoren erscheint jedoch die hier gewählte Form im Hinblick auf die Spektraldarstellung und die Herleitung der Diskreten Fouriertransformation im Abschnitt 5.2 als am besten geeignet.
+
Anzumerken ist, dass in der Literatur auch andere Beschreibungsformen gefunden werden.&nbsp; Den Autoren erscheint jedoch die hier gewählte Form im Hinblick auf die Spektraldarstellung und die Herleitung der&nbsp; [[Signaldarstellung/Diskrete_Fouriertransformation_(DFT)|Diskreten Fouriertransformation]]&nbsp;  $\rm (DFT)$ am besten geeignet.
  
{{Definition}}
+
{{BlaueBox|TEXT=
Der Diracpuls (im Zeitbereich) besteht aus unendlich vielen Diracimpulsen, jeweils im gleichen Abstand $T_A$ und alle mit gleichem Impulsgewicht $T_A$:
+
$\text{Definition:}$&nbsp; Der&nbsp; $\text{Diracpuls}$&nbsp; (im Zeitbereich)&nbsp; besteht aus unendlich vielen Diracimpulsen, jeweils im gleichen Abstand&nbsp; $T_{\rm A}$&nbsp; und alle mit gleichem Impulsgewicht&nbsp; $T_{\rm A}$:
 
   
 
   
$$p_{\delta}(t) =  \sum_{\nu = - \infty }^{+\infty} T_{\rm A} \cdot
+
:$$p_{\delta}(t) =  \sum_{\nu = - \infty }^{+\infty} T_{\rm A} \cdot
 
  \delta(t- \nu \cdot T_{\rm A}
 
  \delta(t- \nu \cdot T_{\rm A}
  )\hspace{0.05cm}.$$
+
  )\hspace{0.05cm}.$$}}
{{end}}
 
  
  
 
Aufgrund dieser Definition ergeben sich für das abgetastete Signal folgende Eigenschaften:
 
Aufgrund dieser Definition ergeben sich für das abgetastete Signal folgende Eigenschaften:
*Das abgetastete Signal zum betrachteten Zeitpunkt (\cdot T_A$) ist gleich $T_A \cdot x(ν \cdot T_A) · \delta (0)$.
+
*Das abgetastete Signal zum betrachteten Zeitpunkt&nbsp; $(\nu \cdot T_{\rm A})$&nbsp; ist gleich&nbsp; $T_{\rm A} \cdot x(\nu \cdot T_{\rm A}) · \delta (0)$.
*Da die Diracfunktion zur Zeit $t = 0$ unendlich ist, sind eigentlich alle Signalwerte $x_A(ν \cdot T_A)$ ebenfalls unendlich groß.
+
*Da die Diracfunktion&nbsp; $\delta (t)$&nbsp; zur Zeit&nbsp; $t = 0$&nbsp; unendlich ist, sind eigentlich alle Signalwerte&nbsp; $x_{\rm A}(\nu \cdot T_{\rm A})$&nbsp; ebenfalls unendlich groß.
*Somit ist auch der auf der letzten Seite eingeführte Faktor $K$ eigentlich unendlich groß.
+
*Somit ist auch der auf der letzten Seite eingeführte Faktor&nbsp; $K$&nbsp; eigentlich unendlich groß.
 
+
*Zwei Abtastwerte&nbsp; $x_{\rm A}(\nu_1 \cdot T_{\rm A})$&nbsp; und&nbsp; $x_{\rm A}(\nu_2 \cdot T_{\rm A})$&nbsp; unterscheiden sich jedoch  im gleichen Verhältnis wie die Signalwerte&nbsp; $x(\nu_1 \cdot T_{\rm A})$&nbsp; und&nbsp; $x(\nu_2 \cdot T_{\rm A})$.
Trotzdem unterscheiden sich zwei Abtastwerte – beispielsweise $x_A(ν_1 \cdot T_A)$ und $x_A(ν_2 \cdot T_A)$ im gleichen Verhältnis wie die Signalwerte $x(ν_1 \cdot T_A)$ und $x(ν_2 \cdot T_A)$.
+
*Die Abtastwerte von&nbsp; $x(t)$&nbsp; erscheinen in den Impulsgewichten der Diracfunktionen:
Die Abtastwerte von $x(t)$ erscheinen in den Impulsgewichten der Diracfunktionen:
 
 
   
 
   
$$x_{\rm A}(t) =  \sum_{\nu = - \infty }^{+\infty} T_{\rm A} \cdot x(\nu \cdot T_{\rm A})\cdot
+
:$$x_{\rm A}(t) =  \sum_{\nu = - \infty }^{+\infty} T_{\rm A} \cdot x(\nu \cdot T_{\rm A})\cdot
 
  \delta (t- \nu \cdot T_{\rm A}
 
  \delta (t- \nu \cdot T_{\rm A}
 
  )\hspace{0.05cm}.$$
 
  )\hspace{0.05cm}.$$
  
*Die zusätzliche Multiplikation mit $T_A$ ist erforderlich, damit $x(t)$ und $x_A(t)$ gleiche Einheit besitzen. Beachten Sie hierbei, dass $\delta (t)$ selbst die Einheit „1/s” aufweist.
+
*Die zusätzliche Multiplikation mit&nbsp; $T_{\rm A}$&nbsp; ist erforderlich, damit&nbsp; $x(t)$&nbsp; und&nbsp; $x_{\rm A}(t)$&nbsp; gleiche Einheit besitzen.&nbsp; Beachten Sie, dass&nbsp; $\delta (t)$&nbsp; selbst die Einheit „1/s” aufweist.
  
Die folgenden Seiten werden zeigen, dass diese gewöhnungsbedürftigen Gleichungen durchaus zu sinnvollen Ergebnissen führen, wenn man sie konsequent und richtig anwendet.
 
  
 +
Die folgenden Seiten werden zeigen, dass diese gewöhnungsbedürftigen Gleichungen durchaus zu sinnvollen Ergebnissen führen, wenn man sie konsequent  anwendet.
  
==Diracpuls im Zeit und Frequenzbereich==
 
  
Entwickelt man den '''Diracpuls''' in eine Fourierreihe und transformiert diese unter Anwendung des Verschiebungssatzes in den Frequenzbereich, so ergibt sich folgende Korrespondenz:
+
==Diracpuls im Zeit- und im Frequenzbereich==
 +
<br>
 +
{{BlaueBox|TEXT=
 +
$\text{Satz:}$&nbsp; Entwickelt man den&nbsp; $\text{Diracpuls}$&nbsp; in eine&nbsp; [[Signaldarstellung/Fourierreihe|Fourierreihe]]&nbsp; und transformiert diese unter Anwendung des&nbsp; [[Signaldarstellung/Gesetzmäßigkeiten_der_Fouriertransformation#Verschiebungssatz|Verschiebungssatzes]]&nbsp; in den Frequenzbereich, so ergibt sich folgende Korrespondenz:
 
   
 
   
$$p_{\delta}(t) =  \sum_{\nu = - \infty }^{+\infty} T_{\rm A} \cdot
+
:$$p_{\delta}(t) =  \sum_{\nu = - \infty }^{+\infty} T_{\rm A} \cdot
 
  \delta(t- \nu \cdot T_{\rm A}
 
  \delta(t- \nu \cdot T_{\rm A}
 
  )\hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} P_{\delta}(f) =  \sum_{\mu = - \infty }^{+\infty} \delta
 
  )\hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} P_{\delta}(f) =  \sum_{\mu = - \infty }^{+\infty} \delta
  (f- \mu \cdot f_{\rm A}
+
  (f- \mu \cdot f_{\rm A} ).$$
).$$
+
 
 +
Hierbei gibt&nbsp; $f_{\rm A} = 1/T_{\rm A}$&nbsp; den Abstand zweier benachbarter Diraclinien im Frequenzbereich an. }}
  
Hierbei gibt $f_A = 1/T_A$ den Abstand zweier benachbarter Diraclinien im Frequenzbereich an. Die Herleitung dieser wichtigen Beziehung folgt auf der nächsten Seite.
 
Das Ergebnis besagt:
 
*Die Fouriertransformierte eines Diracpulses $p_{\delta}(t)$ ergibt wiederum einen Diracpuls, aber nun im Frequenzbereich  ⇒  $P_{\delta}(f)$.
 
*Die Abstände der Diraclinien in der Zeit– und Frequenzbereichsdarstellung folgen dem '''Reziprozitätsgesetz''':
 
 
   
 
   
$$T_{\rm A} \cdot f_{\rm A} = 1
+
{{BlaueBox|TEXT=
\hspace{0.05cm}.$$
+
$\text{Beweis:}$&nbsp; Die Herleitung der hier angegebenen Spektralfunktion&nbsp; $P_{\delta}(f)$&nbsp; geschieht in mehreren Schritten:
  
*Die Gewichte der einzelnen Diraclinien von $P_{\delta}(f)$ sind einheitlich gleich 1.
+
'''(1)'''&nbsp;&nbsp; Da&nbsp; $p_{\delta}(t)$&nbsp; periodisch mit dem konstanten Abstand&nbsp; $T_{\rm A}$&nbsp; zwischen zwei Diraclinien ist, kann die&nbsp; [[Signaldarstellung/Fourierreihe#Komplexe_Fourierreihe|(komplexe) Fourierreihendarstellung]]&nbsp; angewendet werden:
 
 
 
 
{{Beispiel}}
 
Die Grafik verdeutlicht die obigen Aussagen für $T_A = 50$ μs und $f_A = 1/T_A = 20$ kHz.
 
 
 
[[Datei:P_ID1121__Sig_T_5_1_S3_NEU.png|250px|right|Diracpuls im Zeit- und Frequenzbereich]]
 
 
 
Man erkennt aus dieser Skizze auch die unterschiedlichen Impulsgewichte von $p_{\delta}(t)$ und $P_{\delta}(f)$.
 
 
 
{{end}}
 
 
 
Beweis der folgenden Forierkorrespondenz:
 
 
 
$$p_{\delta}(t) =  \sum_{\nu = - \infty }^{+\infty} T_{\rm A} \cdot
 
\delta(t- \nu \cdot T_{\rm A}
 
)\hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} P_{\delta}(f) =  \sum_{\mu = - \infty }^{+\infty} \delta
 
(f- \mu \cdot f_{\rm A}
 
).$$
 
 
   
 
   
{{Beweis}}
+
:$$p_{\delta}(t) =  \sum_{\mu = - \infty }^{+\infty} D_{\mu} \cdot
Die Herleitung der hier angegebenen Spektralfunktion $P_{\delta}(f)$ geschieht in mehreren Schritten:
+
  {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm} \cdot 2 \hspace{0.05cm} \pi \hspace{0.05cm}\cdot \hspace{0.05cm}\mu \hspace{0.05cm}\cdot \hspace{0.05cm}t/T_{\rm A} }
Da $p_{\delta}(t)$ periodisch mit dem konstanten Abstand $T_A$ zwischen zwei Diraclinien ist, kann die (komplexe) Fourierreihendarstellung angewendet werden:
 
 
$$p_{\delta}(t) =  \sum_{\mu = - \infty }^{+\infty} D_{\mu} \cdot
 
  {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm} \cdot 2 \hspace{0.05cm} \pi \cdot \hspace{0.05cm}\mu \hspace{0.05cm}\cdot \hspace{0.05cm}t/T_{\rm A}}
 
 
  \hspace{0.3cm}{\rm mit}\hspace{0.3cm}
 
  \hspace{0.3cm}{\rm mit}\hspace{0.3cm}
  D_{\mu} = \frac{1}{T_{\rm A}} \cdot \int_{-T_{\rm A}/2
+
  D_{\mu} = \frac{1}{T_{\rm A} } \cdot \int_{-T_{\rm A}/2
  }^{+T_{\rm A}/2}p_{\delta}(t) \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi \cdot \hspace{0.05cm}\mu \hspace{0.05cm}
+
  }^{+T_{\rm A}/2}p_{\delta}(t) \cdot {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi \hspace{0.05cm}\cdot \hspace{0.05cm}\mu \hspace{0.05cm}
  \cdot \hspace{0.05cm}t/T_{\rm A}}\hspace{0.1cm} {\rm d}t\hspace{0.05cm}.$$
+
  \cdot \hspace{0.05cm}t/T_{\rm A} }\hspace{0.1cm} {\rm d}t\hspace{0.05cm}.$$
  
Im Integrationsbereich von $–T_A/2 bis +T_A/2$ gilt aber für den Diracpuls im Zeitbereich: $p_{\delta}(t) = T_A \cdot \delta(t)$. Damit kann für die komplexen Fourierkoeffizienten geschrieben werden:
+
'''(2)'''&nbsp;&nbsp; Im Bereich von&nbsp; $–T_{\rm A}/2$&nbsp; bis&nbsp; $+T_{\rm A}/2$&nbsp; gilt für den Diracpuls im Zeitbereich: &nbsp; $p_{\delta}(t) = T_{\rm A} \cdot \delta(t)$.&nbsp; Damit kann man für die komplexen Fourierkoeffizienten schreiben: &nbsp;
$$D_{\mu} = \int_{-T_{\rm A}/2
+
:$$D_{\mu} = \int_{-T_{\rm A}/2
  }^{+T_{\rm A}/2}{\delta}(t) \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi \cdot \hspace{0.05cm}\mu \hspace{0.05cm}
+
  }^{+T_{\rm A}/2}{\delta}(t) \cdot {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi \hspace{0.05cm}\cdot \hspace{0.05cm}\mu \hspace{0.05cm}
  \cdot \hspace{0.05cm}t/T_{\rm A}}\hspace{0.1cm} {\rm d}t\hspace{0.05cm}.$$  
+
  \cdot \hspace{0.05cm}t/T_{\rm A} }\hspace{0.1cm} {\rm d}t\hspace{0.05cm}.$$  
Unter Berücksichtigung der Tatsache, dass für $t \neq 0$ der Diracimpuls gleich 0 ist und für $t = 0$ der komplexe Drehfaktor gleich 1, gilt weiter:
+
'''(3)'''&nbsp;&nbsp; Unter Berücksichtigung der Tatsache, dass für&nbsp; $t \neq 0$&nbsp; der Diracimpuls Null ist und für&nbsp; $t = 0$&nbsp; der komplexe Drehfaktor gleich&nbsp; $1$, gilt weiter:
$$D_{\mu} = \int_{-T_{\rm A}/2
+
:$$D_{\mu} = \int_{- T_{\rm A}/2
 
  }^{+T_{\rm A}/2}{\delta}(t) \hspace{0.1cm} {\rm d}t = 1\hspace{0.5cm}{\Rightarrow}\hspace{0.5cm}
 
  }^{+T_{\rm A}/2}{\delta}(t) \hspace{0.1cm} {\rm d}t = 1\hspace{0.5cm}{\Rightarrow}\hspace{0.5cm}
p_{\delta}(t) =  \sum_{\mu = - \infty }^{+\infty} {\rm e}^{{\rm j} \hspace{0.05cm}
+
p_{\delta}(t) =  \sum_{\mu = - \infty }^{+\infty} {\rm e}^{ {\rm j} \hspace{0.05cm}
  \cdot 2 \hspace{0.05cm} \pi \cdot \hspace{0.05cm}\mu \hspace{0.05cm}\cdot \hspace{0.05cm}t/T_{\rm A}}\hspace{0.05cm}.$$  
+
  \cdot 2 \hspace{0.05cm} \pi \cdot \hspace{0.05cm}\mu \hspace{0.05cm}\cdot \hspace{0.05cm}t/T_{\rm A} }\hspace{0.05cm}.
Der Verschiebungssatz im Frequenzbereich lautet mit $f_A = 1/T_A$:
+
$$
$${\rm e}^{{\rm j} \hspace{0.05cm}
+
'''(4)'''&nbsp;&nbsp; Der&nbsp; [[Signaldarstellung/Gesetzmäßigkeiten_der_Fouriertransformation#Verschiebungssatz|Verschiebungssatz im Frequenzbereich]]&nbsp; lautet mit&nbsp; $f_{\rm A} = 1/T_{\rm A}$:
\cdot 2 \hspace{0.05cm} \pi \cdot \hspace{0.05cm}\mu \hspace{0.05cm}\cdot \hspace{0.05cm}
+
:$${\rm e}^{ {\rm j} \hspace{0.05cm}
 +
\hspace{0.05cm} \cdot 2 \hspace{0.05cm} \pi \hspace{0.05cm}\cdot \hspace{0.05cm}\mu \hspace{0.05cm}\cdot \hspace{0.05cm}
 
  f_{\rm A}\hspace{0.05cm}\cdot \hspace{0.05cm}t}\hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm}
 
  f_{\rm A}\hspace{0.05cm}\cdot \hspace{0.05cm}t}\hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm}
 
  \delta
 
  \delta
 
  (f- \mu \cdot f_{\rm A}
 
  (f- \mu \cdot f_{\rm A}
 
  )\hspace{0.05cm}.$$  
 
  )\hspace{0.05cm}.$$  
Wendet man das Ergebnis auf jeden einzelnen Summanden an, so erhält man schließlich:
+
'''(5)'''&nbsp;&nbsp; Wendet man das Ergebnis auf jeden einzelnen Summanden an, so erhält man schließlich:
 
   
 
   
$$P_{\delta}(f) =  \sum_{\mu = - \infty }^{+\infty} \delta
+
:$$P_{\delta}(f) =  \sum_{\mu = - \infty }^{+\infty} \delta
 
  (f- \mu \cdot f_{\rm A}
 
  (f- \mu \cdot f_{\rm A}
 
  )\hspace{0.05cm}.$$
 
  )\hspace{0.05cm}.$$
 +
<div align="right">q.e.d.</div>}}
  
<div align="right">q.e.d.</div>
 
  
{{end}}
+
Das Ergebnis besagt:
 +
*Der Diracpuls&nbsp; $p_{\delta}(t)$&nbsp; im Zeitbereich besteht aus unendlich vielen Diracimpulsen, jeweils im gleichen Abstand&nbsp; $T_{\rm A}$&nbsp; und alle mit gleichem Impulsgewicht&nbsp; $T_{\rm A}$.
 +
*Die Fouriertransformierte von&nbsp; $p_{\delta}(t)$&nbsp;  ergibt wiederum einen Diracpuls, aber nun im Frequenzbereich  &nbsp; ⇒  &nbsp; $P_{\delta}(f)$.
 +
*$P_{\delta}(f)$&nbsp; besteht ebenfalls aus unendlich vielen Diracimpulsen, nun aber im jeweiligen Abstand&nbsp; $f_{\rm A} = 1/T_{\rm A}$&nbsp; und alle mit dem Impulsgewicht&nbsp; $1$.
 +
*Die Abstände der Diraclinien in der Zeit– und Frequenzbereichsdarstellung folgen demnach dem&nbsp; [[Signaldarstellung/Gesetzmäßigkeiten_der_Fouriertransformation#Reziprozit.C3.A4tsgesetz_von_Zeitdauer_und_Bandbreite|Reziprozitätsgesetz]]: &nbsp;
 +
:$$T_{\rm A} \cdot f_{\rm A} = 1 \hspace{0.05cm}.$$
  
Das bedeutet:
 
*Der Diracpuls $p_{\delta}(t)$ im Zeitbereich besteht aus unendlich vielen Diracimpulsen, jeweils im gleichen Abstand TA und alle mit gleichem Impulsgewicht $T_A$.
 
*Auch der Diracpuls $P_{\delta}(f)$ im Frequenzbereich besteht aus unendlich vielen Diracimpulsen, nun aber im jeweiligen Abstand $f_A = 1/T_A$ und alle mit dem Impulsgewicht 1.
 
  
 +
[[Datei:P_ID1121__Sig_T_5_1_S3_NEU.png|right|frame|Diracpuls im Zeit- und Frequenzbereich]]
 +
{{GraueBox|TEXT=
 +
$\text{Beispiel 1:}$&nbsp; Die Grafik verdeutlicht die obigen Aussagen für
 +
*$T_{\rm A} = 50\,{\rm &micro;s}$,
 +
*$f_{\rm A} = 1/T_{\rm A} = 20\,\text{kHz}$ .
 +
 +
 +
Man erkennt aus dieser Skizze auch die unterschiedlichen Impulsgewichte von&nbsp; $p_{\delta}(t)$&nbsp; und&nbsp; $P_{\delta}(f)$.}}
  
  
 
==Frequenzbereichsdarstellung==
 
==Frequenzbereichsdarstellung==
 
+
<br>
Zum Spektrum von $x_A(t)$ kommt man durch Anwendung des Faltungssatzes. Dieser besagt, dass der Multiplikation im Zeitbereich die Faltungsoperation im Spektralbereich entspricht:
+
Zum Spektrum des abgetasteten Signals&nbsp; $x_{\rm A}(t)$&nbsp; kommt man durch Anwendung des&nbsp; [[Signaldarstellung/Faltungssatz_und_Faltungsoperation#Faltung_im_Frequenzbereich|Faltungssatzes]].&nbsp; Dieser besagt, dass der Multiplikation im Zeitbereich die Faltung im Spektralbereich entspricht:
 
   
 
   
$$x_{\rm A}(t) = x(t) \cdot p_{\delta}(t)\hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm}
+
:$$x_{\rm A}(t) = x(t) \cdot p_{\delta}(t)\hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm}
 
  X_{\rm A}(f) = X(f) \star P_{\delta}(f)\hspace{0.05cm}.$$
 
  X_{\rm A}(f) = X(f) \star P_{\delta}(f)\hspace{0.05cm}.$$
  
Aus dem Spektrum $X(f)$ wird durch Faltung mit der um $\mu \cdot f_A$ verschobenen Diraclinie:
+
Aus dem Spektrum&nbsp; $X(f)$&nbsp; wird durch Faltung mit der um&nbsp; $\mu \cdot f_{\rm A}$&nbsp; verschobenen Diraclinie:
 
   
 
   
$$X(f) \star \delta
+
:$$X(f) \star \delta
 
  (f- \mu \cdot f_{\rm A}
 
  (f- \mu \cdot f_{\rm A}
 
  )= X (f- \mu \cdot f_{\rm A}
 
  )= X (f- \mu \cdot f_{\rm A}
Zeile 158: Zeile 180:
 
Wendet man dieses Ergebnis auf alle Diraclinien des Diracpulses an, so erhält man schließlich:
 
Wendet man dieses Ergebnis auf alle Diraclinien des Diracpulses an, so erhält man schließlich:
 
   
 
   
$$X_{\rm A}(f) = X(f) \star \sum_{\mu = - \infty }^{+\infty} \delta
+
:$$X_{\rm A}(f) = X(f) \star \sum_{\mu = - \infty }^{+\infty} \delta
 
  (f- \mu \cdot f_{\rm A}
 
  (f- \mu \cdot f_{\rm A}
 
  ) = \sum_{\mu = - \infty }^{+\infty} X (f- \mu \cdot f_{\rm A}
 
  ) = \sum_{\mu = - \infty }^{+\infty} X (f- \mu \cdot f_{\rm A}
 
  )\hspace{0.05cm}.$$
 
  )\hspace{0.05cm}.$$
  
Das heißt: Die Abtastung des analogen Zeitsignals $x(t)$ in äquidistanten Abständen $T_A$ führt im Spektralbereich zu einer '''periodischen Fortsetzung''' von $X(f)$ mit dem Frequenzabstand $f_A = 1/T_A$.
+
{{BlaueBox|TEXT=
 +
$\text{Fazit:}$&nbsp; Die Abtastung des analogen Zeitsignals&nbsp; $x(t)$&nbsp; in äquidistanten Abständen&nbsp; $T_{\rm A}$&nbsp; führt im Spektralbereich zu einer&nbsp; $\text{periodischen Fortsetzung}$&nbsp; von&nbsp; $X(f)$&nbsp; mit dem Frequenzabstand&nbsp; $f_{\rm A} = 1/T_{\rm A}$.}}
  
{{Beispiel}}
 
Die obere Grafik zeigt schematisch das Spektrum $X(f)$ eines analogen Signals $x(t)$, das Frequenzen bis 5 kHz beinhaltet.
 
  
[[Datei:P_ID1122__Sig_T_5_1_S4_neu.png|250px|right|Spektrum des abgetasteten Signals]]
+
{{GraueBox|TEXT=
 +
$\text{Beispiel 2:}$&nbsp;
 +
Die obere Grafik zeigt&nbsp; (schematisch!)&nbsp; das Spektrum&nbsp; $X(f)$&nbsp; eines Analogsignals&nbsp; $x(t)$, das Frequenzen bis&nbsp; $5 \text{ kHz}$&nbsp; beinhaltet.
  
Tastet man das Signal mit der Abtastrate $f_A$ = 20 kHz, also im jeweiligen Abstand $T_A$ = 50 μs, ab, so erhält man das unten skizzierte periodische Spektrum $X_A(f)$. Da die Diracfunktionen unendlich schmal sind, beinhaltet $x_A(t)$ auch beliebig hochfrequente Anteile. Dementsprechend ist die Spektralfunktion $X_A(f)$ des abgetasteten Signals bis ins Unendliche ausgedehnt.
+
[[Datei:P_ID1122__Sig_T_5_1_S4_neu.png|right|frame|Spektrum des abgetasteten Signals]]
  
{{end}}
+
Tastet man das Signal mit der Abtastrate&nbsp; $f_{\rm A}\,\text{ = 20 kHz}$, also im jeweiligen Abstand&nbsp; $T_{\rm A}\, = {\rm 50 \, &micro;s}$&nbsp; ab, so erhält man das unten skizzierte periodische Spektrum&nbsp; $X_{\rm A}(f)$.
 +
*Da die Diracfunktionen unendlich schmal sind, beinhaltet das abgetastete Signal&nbsp;  $x_{\rm A}(t)$&nbsp; auch beliebig hochfrequente Anteile.
 +
*Dementsprechend ist die Spektralfunktion&nbsp; $X_{\rm A}(f)$&nbsp; des abgetasteten Signals bis ins Unendliche ausgedehnt.}}
  
  
 
==Signalrekonstruktion==
 
==Signalrekonstruktion==
 +
<br>
  
Die Signalabtastung ist bei einem digitalen Nachrichtenübertragungssystem kein Selbstzweck, sondern sie muss irgendwann wieder rückgängig gemacht werden. Betrachten wir zum Beispiel das folgende System:
+
Die Signalabtastung ist bei einem digitalen Übertragungssystem kein Selbstzweck, sondern sie muss irgendwann wieder rückgängig gemacht werden.  
 +
[[Datei:P_ID1123__Sig_T_5_1_S5a_neu.png|left|frame|Signalabtastung und Signalrekonstruktion]]
  
[[Datei:P_ID1123__Sig_T_5_1_S5a_neu.png|250px|right|Signalabtastung und -rekonstruktion]]
+
Betrachten wir zum Beispiel das nebenstehende System:
 +
*Das Analogsignal&nbsp; $x(t)$&nbsp; mit der  Bandbreite&nbsp; $B_{\rm NF}$&nbsp; wird wie oben beschrieben abgetastet.
 +
*Am Ausgang eines idealen Übertragungssystems liegt das ebenfalls zeitdiskrete Signal&nbsp; $y_{\rm A}(t) = x_{\rm A}(t)$&nbsp; vor.
 +
*Die Frage ist nun, wie der Block&nbsp; $\text{Signalrekonstruktion}$&nbsp; zu gestalten ist, damit auch&nbsp; $y(t) = x(t)$&nbsp; gilt.
 +
<br clear=all>
 +
[[Datei:P_ID1124__Sig_T_5_1_S5b_neu.png|right|frame|Frequenzbereichsdarstellung der Signalrekonstruktion]]
 +
Die Lösung ist einfach, wenn man die Spektralfunktionen betrachtet: &nbsp;
  
Das Analogsignal $x(t)$ mit Bandbreite $B_{NF}$ wird wie oben beschrieben abgetastet. Am Ausgang eines idealen Übertragungssystems liegt das ebenfalls zeitdiskrete Signal $y_A(t) = x_A(t)$ vor. Die Frage ist nun, wie der Block '''Signalrekonstruktion''' zu gestalten ist, damit auch $y(t) = x(t)$ gilt.
+
Man erhält aus&nbsp; $Y_{\rm A}(f)$&nbsp; das Spektrum&nbsp; $Y(f) = X(f)$&nbsp; durch einen Tiefpass mit dem&nbsp; [[Lineare_zeitinvariante_Systeme/Systembeschreibung_im_Frequenzbereich#.C3.9Cbertragungsfunktion_-_Frequenzgang|Frequenzgang]]&nbsp; $H(f)$, der&nbsp;
 
 
[[Datei:P_ID1124__Sig_T_5_1_S5b_neu.png|250px|right|Frequenzbereichsdarstellung der Signalrekonstruktion]]
 
 
 
Die Lösung ist relativ einfach, wenn man die Spektralfunktionen betrachtet. Man erhält aus $Y_A(f)$ das Spektrum $Y(f) = X(f)$ durch einen Tiefpass mit dem Frequenzgang $H(f)$, der
 
 
*die tiefen Frequenzen unverfälscht durchlässt:
 
*die tiefen Frequenzen unverfälscht durchlässt:
$$H(f) = 1 \hspace{0.3cm}{\rm{f\ddot{u}r}} \hspace{0.3cm} |f| \le B_{\rm
+
:$$H(f) = 1 \hspace{0.3cm}{\rm{f\ddot{u}r}} \hspace{0.3cm} |f| \le B_{\rm
 
   NF}\hspace{0.05cm},$$
 
   NF}\hspace{0.05cm},$$
 
*die hohen Frequenzen vollständig unterdrückt:
 
*die hohen Frequenzen vollständig unterdrückt:
$$H(f) = 0 \hspace{0.3cm}{\rm{f\ddot{u}r}} \hspace{0.3cm} |f| \ge f_{\rm A} - B_{\rm
+
:$$H(f) = 0 \hspace{0.3cm}{\rm{f\ddot{u}r}} \hspace{0.3cm} |f| \ge f_{\rm A} - B_{\rm
   NF}\hspace{0.05cm}.$$  
+
   NF}\hspace{0.05cm}.$$
Weiter ist aus der Grafik zu erkennen, dass der Frequenzgang $H(f)$ im Bereich von $B_{NF}$ bis $f_A–B_{NF}$ beliebig geformt sein kann, beispielsweise linear abfallend (gestrichelter Verlauf) oder auch rechteckförmig, solange die zwei oben genannten Bedingungen erfüllt sind.
+
 +
Weiter ist aus der Grafik zu erkennen, dass der Frequenzgang&nbsp; $H(f)$&nbsp; im Bereich von&nbsp; $B_{\rm NF}$&nbsp; bis&nbsp; $f_{\rm A}–B_{\rm NF}$&nbsp; beliebig geformt sein kann, solange die beiden oben genannten Bedingungen erfüllt sind,
 +
 +
*beispielsweise linear abfallend (gestrichelter Verlauf)  
 +
*oder auch rechteckförmig.  
 +
 
  
  
 
==Das Abtasttheorem==
 
==Das Abtasttheorem==
 +
<br>
 +
Die vollständige Rekonstruktion des Analogsignals&nbsp; $y(t)$&nbsp; aus dem abgetasteten Signal&nbsp; $y_{\rm A}(t) = x_{\rm A}(t)$&nbsp; ist nur möglich, wenn die Abtastrate&nbsp; $f_{\rm A}$&nbsp; entsprechend der Bandbreite&nbsp; $B_{\rm NF}$&nbsp; des Nachrichtensignals richtig gewählt wurde.
  
Die vollständige Rekonstruktion des Analogsignals $y(t)$ aus dem abgetasteten Signal $y_A(t) = x_A(t)$ ist nur möglich, wenn die Abtastrate $f_A$ entsprechend der Bandbreite $B_{NF}$ des Nachrichtensignals richtig gewählt wurde. Aus der Grafik der letzten Seite erkennt man, dass folgende Bedingung erfüllt sein muss:
+
Aus der Grafik der&nbsp; [[Signaldarstellung/Zeitdiskrete_Signaldarstellung#Signalrekonstruktion|letzten Seite]]&nbsp; erkennt man, dass folgende Bedingung erfüllt sein muss:
  
$$f_{\rm A} - B_{\rm  NF} > B_{\rm  NF} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}f_{\rm A} > 2 \cdot  B_{\rm  NF}\hspace{0.05cm}.$$
+
:$$f_{\rm A} - B_{\rm  NF} > B_{\rm  NF} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}f_{\rm A} > 2 \cdot  B_{\rm  NF}\hspace{0.05cm}.$$
 
   
 
   
{{Satz}}
+
{{BlaueBox|TEXT=
'''Abtasttheorem''': Besitzt ein Analogsignal $x(t)$ nur Spektralanteile im Bereich $|f| < B_{NF}$, so kann dieses aus seinem abgetasteten Signal nur dann vollständig rekonstruiert werden, wenn die Abtastrate $f_A ≥ 2 \cdot B_{NF}$ beträgt. Für den Abstand zweier Abtastwerte muss demnach gelten:
+
$\text{Abtasttheorem:}$&nbsp; Besitzt ein Analogsignal&nbsp; $x(t)$&nbsp; Spektralanteile im Bereich&nbsp; $\vert f \vert < B_{\rm NF}$, so kann dieses aus seinem abgetasteten Signal nur dann vollständig rekonstruiert werden, wenn die Abtastrate hinreichend groß ist:
 +
:$$f_{\rm A} ≥ 2 \cdot B_{\rm NF}.$$  
 +
 
 +
Für den Abstand zweier Abtastwerte muss demnach gelten:
 
   
 
   
$$T_{\rm A} \le \frac{1}{ 2 \cdot B_{\rm  NF}}\hspace{0.05cm}.$$
+
:$$T_{\rm A} \le \frac{1}{ 2 \cdot B_{\rm  NF} }\hspace{0.05cm}.$$}}
{{end}}
 
  
  
Wird bei der Abtastung der größtmögliche Wert $T_A = 1/(2B_{NF})$ herangezogen, so muss zur Signalrekonstruktion des Analogsignals aus seinen Abtastwerten ein idealer, rechteckförmiger Tiefpass mit der Grenzfrequenz $f_G = f_A/2 = 1/(2T_A)$ verwendet werden.
+
Wird bei der Abtastung der größtmögliche Wert &nbsp; &nbsp; $T_{\rm A} = 1/(2B_{\rm NF})$&nbsp; herangezogen,  
 +
*so muss zur Signalrekonstruktion des Analogsignals aus seinen Abtastwerten  
 +
*ein idealer, rechteckförmiger Tiefpass mit der Grenzfrequenz&nbsp; $f_{\rm G} = f_{\rm A}/2 = 1/(2T_{\rm A})$&nbsp; verwendet werden.
  
{{Beispiel}}
 
Die Grafik zeigt oben das auf $\pm 5$ kHz begrenzte Spektrum $X(f)$ eines Analogsignals, unten das Spektrum $X_A(f)$ des im Abstand $T_A$ = 100 μs abgetasteten Signals  ⇒  $f_A$ = 10 kHz. Zusätzlich eingezeichnet ist der Frequenzgang $H(f)$ des Tiefpasses zur Signalrekonstruktion, dessen Grenzfrequenz $f_G = f_A/2 =$ 5 kHz betragen muss. Mit jedem anderen $f_G$–Wert ergibt sich $Y(f) \neq X(f)$. Bei $f_G < 5$ kHz fehlen die oberen $X(f)$–Anteile, während es bei $f_G > 5$ kHz aufgrund von Faltungsprodukten zu unerwünschten Spektralanteilen in $Y(f)$ kommt.
 
  
[[Datei:P_ID1125__Sig_T_5_1_S6_neu.png|250px|right|Abtasttheorem im Frequenzbereich]]
+
{{GraueBox|TEXT=
 +
$\text{Beispiel 3:}$&nbsp; Die Grafik zeigt oben das auf&nbsp; $\pm\text{ 5 kHz}$&nbsp; begrenzte Spektrum&nbsp; $X(f)$&nbsp; eines Analogsignals, unten das Spektrum&nbsp; $X_{\rm A}(f)$&nbsp; des im Abstand&nbsp; $T_{\rm A} =\,\text{ 100 &micro;s}$&nbsp; abgetasteten Signals &nbsp; ⇒ &nbsp; $f_{\rm A}=\,\text{ 10 kHz}$.
 +
[[Datei:P_ID1125__Sig_T_5_1_S6_neu.png|right|frame|Abtasttheorem im Frequenzbereich]]
 +
Zusätzlich eingezeichnet ist der Frequenzgang&nbsp; $H(f)$&nbsp; des rechteckförmigen Tiefpasses zur Signalrekonstruktion, dessen Grenzfrequenz&nbsp; $f_{\rm G} = f_{\rm A}/2 = 5\,\text{ kHz}$&nbsp; betragen muss.
  
Wäre die Abtastung beim Sender mit einer Abtastrate $f_A < 10$ kHz erfolgt  ⇒  $T_A > 100$ μs, so wäre das Analogsignal $y(t)$ aus den Abtastwerten $y_A(t)$ auf keinen Fall rekonstruierbar.
+
*Mit jedem anderen&nbsp; $f_{\rm G}$–Wert ergäbe sich&nbsp; $Y(f) \neq X(f)$.
 +
*Bei&nbsp; $f_{\rm G} < 5\,\text{ kHz}$&nbsp; fehlen die oberen&nbsp; $X(f)$–Anteile.
 +
* Bei&nbsp; $f_{\rm G} > 5\,\text{ kHz}$&nbsp; kommt es aufgrund von Faltungsprodukten zu unerwünschten Spektralanteilen in&nbsp; $Y(f)$.
  
{{end}}
 
 
 
''Hinweis'': Zu der im Kapitel 5 behandelten Thematik gibt es ein Interaktionsmodul:
 
Abtastung analoger Signale und Signalrekonstruktion
 
 
==Aufgaben zu Kapitel 5.1==
 
  
 +
Wäre die Abtastung am Sender mit der Abtastrate&nbsp; $f_{\rm A} < 10\,\text{ kHz}$&nbsp;  erfolgt  &nbsp; ⇒  &nbsp;  $T_{\rm A} >100 \,{\rm &micro;  s}$,&nbsp; so wäre das Analogsignal&nbsp; $y(t) = x(t)$&nbsp; aus den Abtastwerten&nbsp; $y_{\rm A}(t)$&nbsp; auf keinen Fall rekonstruierbar.}}
  
  
 +
''Hinweis'': &nbsp; Zu der hier behandelten Thematik gibt es ein interaktives Applet: &nbsp;
 +
[[Applets:Abtastung_analoger_Signale_und_Signalrekonstruktion|Abtastung analoger Signale und Signalrekonstruktion]]
  
  
 +
==Aufgaben zum Kapitel==
 +
<br>
 +
[[Aufgaben:Aufgabe_5.1:_Zum_Abtasttheorem|Aufgabe 5.1: Zum Abtasttheorem]]
  
 +
[[Aufgaben:Aufgabe_5.1Z:_Abtastung_harmonischer_Schwingungen|Aufgabe 5.1Z: Abtastung harmonischer Schwingungen]]
 +
 
 +
 
{{Display}}
 
{{Display}}

Aktuelle Version vom 12. Mai 2021, 16:59 Uhr

# ÜBERBLICK ZUM FÜNFTEN HAUPTKAPITEL #


Voraussetzung für die systemtheoretische Untersuchung von Digitalsystemen oder für deren Computersimulation ist eine geeignete zeitdiskrete Signalbeschreibung.

Dieses Kapitel verdeutlicht den mathematischen Übergang von zeitkontinuierlichen auf zeitdiskrete Signale, wobei von  Fouriertransformation und Fourierrücktransformation  ausgegangen wird.

Das Kapitel beinhaltet im Einzelnen:

  • die Zeit- und Frequenzbereichsdarstellung zeitdiskreter Signale,
  • das Abtasttheorem, das bei der Zeitdiskretisierung unbedingt zu beachten ist,
  • die Rekonstruktion des Analogsignals aus der zeitdiskreten Repräsentation,
  • die Diskrete Fouriertransformation (DFT) und deren Inverse (IDFT),
  • die Fehlermöglichkeiten bei Anwendung von DFT und IDFT,
  • die Anwendung der Spektralanalyse zur Verbesserung messtechnischer Verfahren, und
  • den für eine Rechnerimplementierung besonders geeigneten FFT-Algorithmus.


Weitere Informationen zum Thema sowie Aufgaben, Simulationen und Programmierübungen finden Sie im

  • Kapitel 7:     Diskrete Fouriertransformation, Programm dft,
  • Kapitel 8:     Spektralanalyse, Programm stp, und
  • Kapitel 12:   Pulscodemodulation, Programm pcm


des Praktikums „Simulationsmethoden in der Nachrichtentechnik”.  Diese (ehemalige) LNT-Lehrveranstaltung an der TU München basiert auf

  • dem Lehrsoftwarepaket  LNTsim   ⇒   Link verweist auf die ZIP-Version des Programms,
  • der  Praktikumsanleitung - Teil A   ⇒   Link verweist auf die PDF-Version; Kapitel 7: Seite 119-144, Kapitel 8: Seite 145-164, und
  • der  Praktikumsanleitung - Teil B   ⇒   Link verweist auf die PDF-Version; Kapitel 12: Seite 271-294.


Prinzip und Motivation


Viele Nachrichtensignale sind analog und damit gleichzeitig  zeitkontinuierlich  und  wertkontinuierlich.  Soll ein solches Analogsignal mittels eines Digitalsystems übertragen werden, so sind folgende Vorverarbeitungsschritte erforderlich:

  • die  $\text{Abtastung}$  des Nachrichtensignals  $x(t)$, die zweckmäßigerweise – aber nicht notwendigerweise – zu äquidistanten Zeitpunkten erfolgt   ⇒   $\text{Zeitdiskretisierung}$,
  • die  $\text{Quantisierung}$  der Abtastwerte, um so die Anzahl  $M$  der möglichen Werte auf einen endlichen Wert zu begrenzen   ⇒   $\text{Wertdiskretisierung}$.


Die Quantisierung wird erst im Kapitel  Pulscodemodulation  des Buches „Modulationsverfahren” im Detail behandelt.

Im Folgenden verwenden wir für die Beschreibung der Abtastung folgende Nomenklatur:

Zur Zeitdiskretisierung des zeitkontinuierlichen Signals  $x(t)$
  • Das zeitkontinuierliche Signal sei  $x(t)$.
  • Das in äquidistanten Abständen  $T_{\rm A}$  abgetastete Signal sei  $x_{\rm A}(t)$.
  • Die Laufvariable  $\nu$  der Abtastung sei  ganzzahlig:
$$\nu \in \mathbb{Z} = \{\hspace{0.05cm} \text{...}\hspace{0.05cm} , –3, –2, –1, \hspace{0.2cm}0, +1, +2, +3, \text{...} \hspace{0.05cm}\} .$$
  • Außerhalb der Abtastzeitpunkte  $\nu \cdot T_{\rm A}$  gilt stets  $x_{\rm A}(t) = 0$.
  • Zu den äquidistanten Abtastzeitpunkten ergibt sich mit der Konstanten  $K$:
$$x_{\rm A}(\nu \cdot T_{\rm A}) = K \cdot x(\nu \cdot T_{\rm A})\hspace{0.05cm}.$$
  • Die Konstante hängt von der Art der Zeitdiskretisierung ab.  Hier:  $K = 1$.


Zeitbereichsdarstellung


$\text{Definition:}$  Im gesamten $\rm LNTwww$ soll unter  $\text{Abtastung}$  die Multiplikation des zeitkontinuierlichen Signals  $x(t)$  mit dem  Diracpuls  $p_{\delta}(t)$  verstanden werden:

$$x_{\rm A}(t) = x(t) \cdot p_{\delta}(t)\hspace{0.05cm}.$$


Anzumerken ist, dass in der Literatur auch andere Beschreibungsformen gefunden werden.  Den Autoren erscheint jedoch die hier gewählte Form im Hinblick auf die Spektraldarstellung und die Herleitung der  Diskreten Fouriertransformation  $\rm (DFT)$ am besten geeignet.

$\text{Definition:}$  Der  $\text{Diracpuls}$  (im Zeitbereich)  besteht aus unendlich vielen Diracimpulsen, jeweils im gleichen Abstand  $T_{\rm A}$  und alle mit gleichem Impulsgewicht  $T_{\rm A}$:

$$p_{\delta}(t) = \sum_{\nu = - \infty }^{+\infty} T_{\rm A} \cdot \delta(t- \nu \cdot T_{\rm A} )\hspace{0.05cm}.$$


Aufgrund dieser Definition ergeben sich für das abgetastete Signal folgende Eigenschaften:

  • Das abgetastete Signal zum betrachteten Zeitpunkt  $(\nu \cdot T_{\rm A})$  ist gleich  $T_{\rm A} \cdot x(\nu \cdot T_{\rm A}) · \delta (0)$.
  • Da die Diracfunktion  $\delta (t)$  zur Zeit  $t = 0$  unendlich ist, sind eigentlich alle Signalwerte  $x_{\rm A}(\nu \cdot T_{\rm A})$  ebenfalls unendlich groß.
  • Somit ist auch der auf der letzten Seite eingeführte Faktor  $K$  eigentlich unendlich groß.
  • Zwei Abtastwerte  $x_{\rm A}(\nu_1 \cdot T_{\rm A})$  und  $x_{\rm A}(\nu_2 \cdot T_{\rm A})$  unterscheiden sich jedoch im gleichen Verhältnis wie die Signalwerte  $x(\nu_1 \cdot T_{\rm A})$  und  $x(\nu_2 \cdot T_{\rm A})$.
  • Die Abtastwerte von  $x(t)$  erscheinen in den Impulsgewichten der Diracfunktionen:
$$x_{\rm A}(t) = \sum_{\nu = - \infty }^{+\infty} T_{\rm A} \cdot x(\nu \cdot T_{\rm A})\cdot \delta (t- \nu \cdot T_{\rm A} )\hspace{0.05cm}.$$
  • Die zusätzliche Multiplikation mit  $T_{\rm A}$  ist erforderlich, damit  $x(t)$  und  $x_{\rm A}(t)$  gleiche Einheit besitzen.  Beachten Sie, dass  $\delta (t)$  selbst die Einheit „1/s” aufweist.


Die folgenden Seiten werden zeigen, dass diese gewöhnungsbedürftigen Gleichungen durchaus zu sinnvollen Ergebnissen führen, wenn man sie konsequent anwendet.


Diracpuls im Zeit- und im Frequenzbereich


$\text{Satz:}$  Entwickelt man den  $\text{Diracpuls}$  in eine  Fourierreihe  und transformiert diese unter Anwendung des  Verschiebungssatzes  in den Frequenzbereich, so ergibt sich folgende Korrespondenz:

$$p_{\delta}(t) = \sum_{\nu = - \infty }^{+\infty} T_{\rm A} \cdot \delta(t- \nu \cdot T_{\rm A} )\hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} P_{\delta}(f) = \sum_{\mu = - \infty }^{+\infty} \delta (f- \mu \cdot f_{\rm A} ).$$

Hierbei gibt  $f_{\rm A} = 1/T_{\rm A}$  den Abstand zweier benachbarter Diraclinien im Frequenzbereich an.


$\text{Beweis:}$  Die Herleitung der hier angegebenen Spektralfunktion  $P_{\delta}(f)$  geschieht in mehreren Schritten:

(1)   Da  $p_{\delta}(t)$  periodisch mit dem konstanten Abstand  $T_{\rm A}$  zwischen zwei Diraclinien ist, kann die  (komplexe) Fourierreihendarstellung  angewendet werden:

$$p_{\delta}(t) = \sum_{\mu = - \infty }^{+\infty} D_{\mu} \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm} \cdot 2 \hspace{0.05cm} \pi \hspace{0.05cm}\cdot \hspace{0.05cm}\mu \hspace{0.05cm}\cdot \hspace{0.05cm}t/T_{\rm A} } \hspace{0.3cm}{\rm mit}\hspace{0.3cm} D_{\mu} = \frac{1}{T_{\rm A} } \cdot \int_{-T_{\rm A}/2 }^{+T_{\rm A}/2}p_{\delta}(t) \cdot {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi \hspace{0.05cm}\cdot \hspace{0.05cm}\mu \hspace{0.05cm} \cdot \hspace{0.05cm}t/T_{\rm A} }\hspace{0.1cm} {\rm d}t\hspace{0.05cm}.$$

(2)   Im Bereich von  $–T_{\rm A}/2$  bis  $+T_{\rm A}/2$  gilt für den Diracpuls im Zeitbereich:   $p_{\delta}(t) = T_{\rm A} \cdot \delta(t)$.  Damit kann man für die komplexen Fourierkoeffizienten schreiben:  

$$D_{\mu} = \int_{-T_{\rm A}/2 }^{+T_{\rm A}/2}{\delta}(t) \cdot {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi \hspace{0.05cm}\cdot \hspace{0.05cm}\mu \hspace{0.05cm} \cdot \hspace{0.05cm}t/T_{\rm A} }\hspace{0.1cm} {\rm d}t\hspace{0.05cm}.$$

(3)   Unter Berücksichtigung der Tatsache, dass für  $t \neq 0$  der Diracimpuls Null ist und für  $t = 0$  der komplexe Drehfaktor gleich  $1$, gilt weiter:

$$D_{\mu} = \int_{- T_{\rm A}/2 }^{+T_{\rm A}/2}{\delta}(t) \hspace{0.1cm} {\rm d}t = 1\hspace{0.5cm}{\Rightarrow}\hspace{0.5cm} p_{\delta}(t) = \sum_{\mu = - \infty }^{+\infty} {\rm e}^{ {\rm j} \hspace{0.05cm} \cdot 2 \hspace{0.05cm} \pi \cdot \hspace{0.05cm}\mu \hspace{0.05cm}\cdot \hspace{0.05cm}t/T_{\rm A} }\hspace{0.05cm}. $$

(4)   Der  Verschiebungssatz im Frequenzbereich  lautet mit  $f_{\rm A} = 1/T_{\rm A}$:

$${\rm e}^{ {\rm j} \hspace{0.05cm} \hspace{0.05cm} \cdot 2 \hspace{0.05cm} \pi \hspace{0.05cm}\cdot \hspace{0.05cm}\mu \hspace{0.05cm}\cdot \hspace{0.05cm} f_{\rm A}\hspace{0.05cm}\cdot \hspace{0.05cm}t}\hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} \delta (f- \mu \cdot f_{\rm A} )\hspace{0.05cm}.$$

(5)   Wendet man das Ergebnis auf jeden einzelnen Summanden an, so erhält man schließlich:

$$P_{\delta}(f) = \sum_{\mu = - \infty }^{+\infty} \delta (f- \mu \cdot f_{\rm A} )\hspace{0.05cm}.$$
q.e.d.


Das Ergebnis besagt:

  • Der Diracpuls  $p_{\delta}(t)$  im Zeitbereich besteht aus unendlich vielen Diracimpulsen, jeweils im gleichen Abstand  $T_{\rm A}$  und alle mit gleichem Impulsgewicht  $T_{\rm A}$.
  • Die Fouriertransformierte von  $p_{\delta}(t)$  ergibt wiederum einen Diracpuls, aber nun im Frequenzbereich   ⇒   $P_{\delta}(f)$.
  • $P_{\delta}(f)$  besteht ebenfalls aus unendlich vielen Diracimpulsen, nun aber im jeweiligen Abstand  $f_{\rm A} = 1/T_{\rm A}$  und alle mit dem Impulsgewicht  $1$.
  • Die Abstände der Diraclinien in der Zeit– und Frequenzbereichsdarstellung folgen demnach dem  Reziprozitätsgesetz:  
$$T_{\rm A} \cdot f_{\rm A} = 1 \hspace{0.05cm}.$$


Diracpuls im Zeit- und Frequenzbereich

$\text{Beispiel 1:}$  Die Grafik verdeutlicht die obigen Aussagen für

  • $T_{\rm A} = 50\,{\rm µs}$,
  • $f_{\rm A} = 1/T_{\rm A} = 20\,\text{kHz}$ .


Man erkennt aus dieser Skizze auch die unterschiedlichen Impulsgewichte von  $p_{\delta}(t)$  und  $P_{\delta}(f)$.


Frequenzbereichsdarstellung


Zum Spektrum des abgetasteten Signals  $x_{\rm A}(t)$  kommt man durch Anwendung des  Faltungssatzes.  Dieser besagt, dass der Multiplikation im Zeitbereich die Faltung im Spektralbereich entspricht:

$$x_{\rm A}(t) = x(t) \cdot p_{\delta}(t)\hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} X_{\rm A}(f) = X(f) \star P_{\delta}(f)\hspace{0.05cm}.$$

Aus dem Spektrum  $X(f)$  wird durch Faltung mit der um  $\mu \cdot f_{\rm A}$  verschobenen Diraclinie:

$$X(f) \star \delta (f- \mu \cdot f_{\rm A} )= X (f- \mu \cdot f_{\rm A} )\hspace{0.05cm}.$$

Wendet man dieses Ergebnis auf alle Diraclinien des Diracpulses an, so erhält man schließlich:

$$X_{\rm A}(f) = X(f) \star \sum_{\mu = - \infty }^{+\infty} \delta (f- \mu \cdot f_{\rm A} ) = \sum_{\mu = - \infty }^{+\infty} X (f- \mu \cdot f_{\rm A} )\hspace{0.05cm}.$$

$\text{Fazit:}$  Die Abtastung des analogen Zeitsignals  $x(t)$  in äquidistanten Abständen  $T_{\rm A}$  führt im Spektralbereich zu einer  $\text{periodischen Fortsetzung}$  von  $X(f)$  mit dem Frequenzabstand  $f_{\rm A} = 1/T_{\rm A}$.


$\text{Beispiel 2:}$  Die obere Grafik zeigt  (schematisch!)  das Spektrum  $X(f)$  eines Analogsignals  $x(t)$, das Frequenzen bis  $5 \text{ kHz}$  beinhaltet.

Spektrum des abgetasteten Signals

Tastet man das Signal mit der Abtastrate  $f_{\rm A}\,\text{ = 20 kHz}$, also im jeweiligen Abstand  $T_{\rm A}\, = {\rm 50 \, µs}$  ab, so erhält man das unten skizzierte periodische Spektrum  $X_{\rm A}(f)$.

  • Da die Diracfunktionen unendlich schmal sind, beinhaltet das abgetastete Signal  $x_{\rm A}(t)$  auch beliebig hochfrequente Anteile.
  • Dementsprechend ist die Spektralfunktion  $X_{\rm A}(f)$  des abgetasteten Signals bis ins Unendliche ausgedehnt.


Signalrekonstruktion


Die Signalabtastung ist bei einem digitalen Übertragungssystem kein Selbstzweck, sondern sie muss irgendwann wieder rückgängig gemacht werden.

Signalabtastung und Signalrekonstruktion

Betrachten wir zum Beispiel das nebenstehende System:

  • Das Analogsignal  $x(t)$  mit der Bandbreite  $B_{\rm NF}$  wird wie oben beschrieben abgetastet.
  • Am Ausgang eines idealen Übertragungssystems liegt das ebenfalls zeitdiskrete Signal  $y_{\rm A}(t) = x_{\rm A}(t)$  vor.
  • Die Frage ist nun, wie der Block  $\text{Signalrekonstruktion}$  zu gestalten ist, damit auch  $y(t) = x(t)$  gilt.


Frequenzbereichsdarstellung der Signalrekonstruktion

Die Lösung ist einfach, wenn man die Spektralfunktionen betrachtet:  

Man erhält aus  $Y_{\rm A}(f)$  das Spektrum  $Y(f) = X(f)$  durch einen Tiefpass mit dem  Frequenzgang  $H(f)$, der 

  • die tiefen Frequenzen unverfälscht durchlässt:
$$H(f) = 1 \hspace{0.3cm}{\rm{f\ddot{u}r}} \hspace{0.3cm} |f| \le B_{\rm NF}\hspace{0.05cm},$$
  • die hohen Frequenzen vollständig unterdrückt:
$$H(f) = 0 \hspace{0.3cm}{\rm{f\ddot{u}r}} \hspace{0.3cm} |f| \ge f_{\rm A} - B_{\rm NF}\hspace{0.05cm}.$$

Weiter ist aus der Grafik zu erkennen, dass der Frequenzgang  $H(f)$  im Bereich von  $B_{\rm NF}$  bis  $f_{\rm A}–B_{\rm NF}$  beliebig geformt sein kann, solange die beiden oben genannten Bedingungen erfüllt sind,

  • beispielsweise linear abfallend (gestrichelter Verlauf)
  • oder auch rechteckförmig.


Das Abtasttheorem


Die vollständige Rekonstruktion des Analogsignals  $y(t)$  aus dem abgetasteten Signal  $y_{\rm A}(t) = x_{\rm A}(t)$  ist nur möglich, wenn die Abtastrate  $f_{\rm A}$  entsprechend der Bandbreite  $B_{\rm NF}$  des Nachrichtensignals richtig gewählt wurde.

Aus der Grafik der  letzten Seite  erkennt man, dass folgende Bedingung erfüllt sein muss:

$$f_{\rm A} - B_{\rm NF} > B_{\rm NF} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}f_{\rm A} > 2 \cdot B_{\rm NF}\hspace{0.05cm}.$$

$\text{Abtasttheorem:}$  Besitzt ein Analogsignal  $x(t)$  Spektralanteile im Bereich  $\vert f \vert < B_{\rm NF}$, so kann dieses aus seinem abgetasteten Signal nur dann vollständig rekonstruiert werden, wenn die Abtastrate hinreichend groß ist:

$$f_{\rm A} ≥ 2 \cdot B_{\rm NF}.$$

Für den Abstand zweier Abtastwerte muss demnach gelten:

$$T_{\rm A} \le \frac{1}{ 2 \cdot B_{\rm NF} }\hspace{0.05cm}.$$


Wird bei der Abtastung der größtmögliche Wert   ⇒   $T_{\rm A} = 1/(2B_{\rm NF})$  herangezogen,

  • so muss zur Signalrekonstruktion des Analogsignals aus seinen Abtastwerten
  • ein idealer, rechteckförmiger Tiefpass mit der Grenzfrequenz  $f_{\rm G} = f_{\rm A}/2 = 1/(2T_{\rm A})$  verwendet werden.


$\text{Beispiel 3:}$  Die Grafik zeigt oben das auf  $\pm\text{ 5 kHz}$  begrenzte Spektrum  $X(f)$  eines Analogsignals, unten das Spektrum  $X_{\rm A}(f)$  des im Abstand  $T_{\rm A} =\,\text{ 100 µs}$  abgetasteten Signals   ⇒   $f_{\rm A}=\,\text{ 10 kHz}$.

Abtasttheorem im Frequenzbereich

Zusätzlich eingezeichnet ist der Frequenzgang  $H(f)$  des rechteckförmigen Tiefpasses zur Signalrekonstruktion, dessen Grenzfrequenz  $f_{\rm G} = f_{\rm A}/2 = 5\,\text{ kHz}$  betragen muss.

  • Mit jedem anderen  $f_{\rm G}$–Wert ergäbe sich  $Y(f) \neq X(f)$.
  • Bei  $f_{\rm G} < 5\,\text{ kHz}$  fehlen die oberen  $X(f)$–Anteile.
  • Bei  $f_{\rm G} > 5\,\text{ kHz}$  kommt es aufgrund von Faltungsprodukten zu unerwünschten Spektralanteilen in  $Y(f)$.


Wäre die Abtastung am Sender mit der Abtastrate  $f_{\rm A} < 10\,\text{ kHz}$  erfolgt   ⇒   $T_{\rm A} >100 \,{\rm µ s}$,  so wäre das Analogsignal  $y(t) = x(t)$  aus den Abtastwerten  $y_{\rm A}(t)$  auf keinen Fall rekonstruierbar.


Hinweis:   Zu der hier behandelten Thematik gibt es ein interaktives Applet:   Abtastung analoger Signale und Signalrekonstruktion


Aufgaben zum Kapitel


Aufgabe 5.1: Zum Abtasttheorem

Aufgabe 5.1Z: Abtastung harmonischer Schwingungen