Aufgabe 3.5: Kullback-Leibler-Distanz & Binominalverteilung: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(6 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 4: Zeile 4:
  
 
[[Datei:P_ID2759__Inf_A_3_4_A.png|right|frame|Vorgegebene Wahrscheinlichkeiten]]
 
[[Datei:P_ID2759__Inf_A_3_4_A.png|right|frame|Vorgegebene Wahrscheinlichkeiten]]
Wir gehen hier von der [[Stochastische_Signaltheorie/Binomialverteilung|Binomialverteilung]] aus, die durch die Parameter  $I$ und  $p$ gekennzeichnet ist   ⇒   siehe  Buch „Stochastische Signaltheorie”:
+
Wir gehen hier von der&nbsp; [[Stochastische_Signaltheorie/Binomialverteilung|Binomialverteilung]]&nbsp; aus, die durch die Parameter &nbsp;$I$&nbsp; und &nbsp;$p$&nbsp; gekennzeichnet ist &nbsp; <br>&#8658; &nbsp; siehe  Buch &bdquo;Stochastische Signaltheorie&rdquo;:
  
 
* Wertebereich:
 
* Wertebereich:
:$$X = \{\hspace{0.05cm}0\hspace{0.05cm}, \hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm}
+
:$$X = \{\hspace{0.05cm}0\hspace{0.05cm}, \hspace{0.15cm} 1\hspace{0.05cm},\hspace{0.15cm}
2\hspace{0.05cm},\hspace{0.05cm}  \text{...}\hspace{0.1cm} ,\hspace{0.05cm} {\mu}\hspace{0.05cm}, \hspace{0.05cm}\text{...}\hspace{0.1cm} , \hspace{0.05cm} I\hspace{0.05cm}\}\hspace{0.05cm},$$
+
2\hspace{0.05cm},\hspace{0.15cm}  \text{...}\hspace{0.1cm} ,\hspace{0.15cm} {\mu}\hspace{0.05cm}, \hspace{0.05cm}\text{...}\hspace{0.1cm} , \hspace{0.15cm} I\hspace{0.05cm}\}\hspace{0.05cm},$$
 
* Wahrscheinlichkeiten:
 
* Wahrscheinlichkeiten:
 
:$$P_X (X = \mu) = {I \choose \mu} \cdot p^{\mu} \cdot (1-p)^{I-\mu} \hspace{0.05cm},$$
 
:$$P_X (X = \mu) = {I \choose \mu} \cdot p^{\mu} \cdot (1-p)^{I-\mu} \hspace{0.05cm},$$
Zeile 15: Zeile 15:
 
* Varianz:
 
* Varianz:
 
:$$\sigma_X^2 = I  \cdot p \cdot (1-p)\hspace{0.05cm}.$$
 
:$$\sigma_X^2 = I  \cdot p \cdot (1-p)\hspace{0.05cm}.$$
Im rot hinterlegten Teil der Tabelle sind die Wahrscheinlichkeiten $P_X(X = \mu$) der betrachteten Binomialverteilung angegeben. In der Teilaufgabe '''(1)''' sollen Sie die dazugehörigen Verteilungsparameter &nbsp;$I$ und &nbsp;$p$ bestimmen.
+
Im rot hinterlegten Teil der Tabelle sind die Wahrscheinlichkeiten&nbsp; $P_X(X = \mu$)&nbsp; der betrachteten Binomialverteilung angegeben.&nbsp; In der Teilaufgabe&nbsp; '''(1)'''&nbsp; sollen Sie die dazugehörigen Verteilungsparameter &nbsp;$I$&nbsp; und &nbsp;$p$&nbsp; bestimmen.
  
  
Diese vorgegebene Binomialverteilung soll hier durch eine [[Stochastische_Signaltheorie/Poissonverteilung|Poissonverteilung]] &nbsp;$Y$ approximiert werden, gekennzeichnet durch die Rate &nbsp;$\lambda$:
+
Diese vorgegebene Binomialverteilung soll hier durch eine&nbsp; [[Stochastische_Signaltheorie/Poissonverteilung|Poissonverteilung]]&nbsp; $Y$&nbsp; approximiert werden, gekennzeichnet durch die Rate &nbsp;$\lambda$:
  
 
* Wertebereich:
 
* Wertebereich:
:$$Y = \{\hspace{0.05cm}0\hspace{0.05cm}, \hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm}
+
:$$Y = \{\hspace{0.05cm}0\hspace{0.05cm}, \hspace{0.15cm} 1\hspace{0.05cm},\hspace{0.05cm}
2\hspace{0.05cm},\hspace{0.05cm}  \text{...}\hspace{0.1cm} ,\hspace{0.05cm} {\mu}\hspace{0.05cm}, \hspace{0.05cm}\text{...}\hspace{0.1cm}\}\hspace{0.05cm},$$
+
2\hspace{0.05cm},\hspace{0.15cm}  \text{...}\hspace{0.1cm} ,\hspace{0.15cm} {\mu}\hspace{0.05cm}, \hspace{0.05cm}\text{...}\hspace{0.1cm}\}\hspace{0.05cm},$$
 
* Wahrscheinlichkeiten:
 
* Wahrscheinlichkeiten:
:$$P_Y (Y = \mu) = \frac{\lambda^{\mu}}{\mu !} \cdot {\rm e}^{\lambda} \hspace{0.05cm},$$
+
:$$P_Y (Y = \mu) = \frac{\lambda^{\mu}}{\mu !} \cdot {\rm e}^{-\lambda} \hspace{0.05cm},$$
 
* Erwartungswerte:
 
* Erwartungswerte:
 
:$$m_Y = \sigma_Y^2 = \lambda\hspace{0.05cm}.$$
 
:$$m_Y = \sigma_Y^2 = \lambda\hspace{0.05cm}.$$
  
Um abschätzen zu können, ob die Wahrscheinlichkeitsfunktion $P_X(X)$ ausreichend gut durch $P_Y(Y)$ approximiert wird, kann man auf die so genannten <i>Kullback&ndash;Leibler&ndash;Distanzen</i> (KLD) zurückgreifen, teilweise in der Literatur auch  <i>relative Entropien</i> genannt. Angepasst an das vorliegende Beispiel lauten diese:
+
Um abschätzen zu können, ob die Wahrscheinlichkeitsfunktion&nbsp; $P_X(X)$&nbsp; ausreichend gut durch&nbsp; $P_Y(Y)$&nbsp; approximiert wird, kann man auf die so genannten&nbsp; <b>Kullback&ndash;Leibler&ndash;Distanzen</b>&nbsp; $\rm (KLD)$&nbsp; zurückgreifen, in der Literatur teilweise  auch&nbsp; &bdquo;relative Entropien&rdquo;&nbsp; genannt.  
 +
 
 +
Angepasst an das vorliegende Beispiel lauten diese:
 
:$$D(P_X \hspace{0.05cm}|| \hspace{0.05cm} P_Y) \hspace{0.15cm}  =  \hspace{0.15cm}  {\rm E} \left [ {\rm log}_2 \hspace{0.1cm} \frac{P_X(X)}{P_Y(X)}\right ] \hspace{0.2cm}=\hspace{0.2cm} \sum_{\mu = 0}^{I}  P_X(\mu) \cdot {\rm log}_2 \hspace{0.1cm} \frac{P_X(\mu)}{P_Y(\mu)} \hspace{0.05cm},$$
 
:$$D(P_X \hspace{0.05cm}|| \hspace{0.05cm} P_Y) \hspace{0.15cm}  =  \hspace{0.15cm}  {\rm E} \left [ {\rm log}_2 \hspace{0.1cm} \frac{P_X(X)}{P_Y(X)}\right ] \hspace{0.2cm}=\hspace{0.2cm} \sum_{\mu = 0}^{I}  P_X(\mu) \cdot {\rm log}_2 \hspace{0.1cm} \frac{P_X(\mu)}{P_Y(\mu)} \hspace{0.05cm},$$
 +
[[Datei:P_ID2760__Inf_A_3_4_B.png|right|frame|Beiliegende Ergebnistabelle]]
 
:$$D(P_Y \hspace{0.05cm}|| \hspace{0.05cm} P_X) \hspace{0.15cm}  =  \hspace{0.15cm}  {\rm E} \left [ {\rm log}_2 \hspace{0.1cm} \frac{P_Y(X)}{P_X(X)}\right ] \hspace{0.2cm}=\hspace{0.2cm} \sum_{\mu = 0}^{\infty}  P_Y(\mu) \cdot {\rm log}_2 \hspace{0.1cm} \frac{P_Y(\mu)}{P_X(\mu)} \hspace{0.05cm}.$$
 
:$$D(P_Y \hspace{0.05cm}|| \hspace{0.05cm} P_X) \hspace{0.15cm}  =  \hspace{0.15cm}  {\rm E} \left [ {\rm log}_2 \hspace{0.1cm} \frac{P_Y(X)}{P_X(X)}\right ] \hspace{0.2cm}=\hspace{0.2cm} \sum_{\mu = 0}^{\infty}  P_Y(\mu) \cdot {\rm log}_2 \hspace{0.1cm} \frac{P_Y(\mu)}{P_X(\mu)} \hspace{0.05cm}.$$
Bei Verwendung des <i>Logarithmus dualis</i> (zur Basis 2) ist hierbei dem Zahlenwert die Pseudo&ndash;Einheit &bdquo;bit&rdquo; hinzuzufügen.
+
Bei Verwendung von&nbsp; $\log_2$&nbsp; ist dem Zahlenwert die Pseudo&ndash;Einheit &bdquo;bit&rdquo; hinzuzufügen.
 +
 
 +
In nebenstehender  Tabelle ist die Kullback&ndash;Leibler&ndash;Distanz&nbsp;  $D(P_X \hspace{0.05cm}|| \hspace{0.05cm} P_Y)$&nbsp;  (in &bdquo;bit&rdquo;)&nbsp; zwischen der Binomial&ndash;PMF&nbsp;  $P_X(\cdot)$&nbsp;  und einigen Poisson&ndash;Näherungen&nbsp;  $P_Y(\cdot)$&nbsp;    $($mit fünf verschiedenen Raten $\lambda)$&nbsp;  eingetragen. 
 +
*Die jeweilige Entropie &nbsp;$H(Y)$, die ebenfalls von der Rate &nbsp;$\lambda$&nbsp; abhängt, ist in der ersten Zeile angegeben.
 +
 
 +
*Die Spalten für&nbsp; $\lambda = 1$&nbsp; sind in den Teilaufgaben&nbsp; '''(3)'''&nbsp; und '''(4)'''&nbsp; zu ergänzen.
 +
*In der Teilaufgabe&nbsp; '''(6)'''&nbsp; sollen diese Ergebnisse interpretiert werden.
 +
 
 +
 
  
[[Datei:P_ID2760__Inf_A_3_4_B.png|right|frame|Beiliegende Ergebnistabelle]]
 
In nebenstehender Tabelle ist die Kullback&ndash;Leibler&ndash;Distanz $D(P_X \hspace{0.05cm}|| \hspace{0.05cm} P_Y)$  (in &bdquo;bit&rdquo;) zwischen Binomial&ndash;PMF $P_X(\cdot)$ und einigen Poisson&ndash;Näherungen $P_Y(\cdot)$  (mit fünf verschiedenen Raten $\lambda$) eingetragen.  Die jeweilige Entropie &nbsp;$H(Y)$, die ebenfalls von der Rate &nbsp;$\lambda$ abhängt, ist in der ersten Zeile angegeben.
 
  
Die Spalten für $\lambda = 1$ sind in den Teilaufgaben '''(3)''' und '''(4)''' zu ergänzen. In der Teilaufgabe '''(6)''' sollen diese Ergebnisse interpretriert werden.
+
Hinweise:  
<br clear=all>
+
*Die Aufgabe gehört zum  Kapitel&nbsp; [[Informationstheorie/Einige_Vorbemerkungen_zu_zweidimensionalen_Zufallsgrößen|Einige Vorbemerkungen zu zweidimensionalen Zufallsgrößen]].
''Hinweise:''
+
*Insbesondere wird Bezug genommen auf die Seite&nbsp; [[Informationstheorie/Einige_Vorbemerkungen_zu_zweidimensionalen_Zufallsgrößen#Relative_Entropie_.E2.80.93_Kullback.E2.80.93Leibler.E2.80.93Distanz|Relative Entropie &ndash; Kullback-Leibler-Distanz]].
*Die Aufgabe gehört zum  Kapitel&nbsp; [[Informationstheorie/Einige_Vorbemerkungen_zu_zweidimensionalen_Zufallsgrößen|Einige Vorbemerkungen zu den 2D-Zufallsgrößen]].
+
*Um die numerischen Berechnungen in Grenzen zu halten, werden folgende Hilfsgrößen vorgegeben;&nbsp;  hierbei bezeichnet&nbsp; $\rm \lg$&nbsp; den Logarithmus zur Basis&nbsp; $10$:
*Insbesondere wird Bezug genommen auf die Seite&nbsp; [[Informationstheorie/Einige_Vorbemerkungen_zu_zweidimensionalen_Zufallsgrößen#Relative_Entropie_.E2.80.93_Kullback.E2.80.93Leibler.E2.80.93Distanz|Relative_Entropie &ndash; Kullback-Leibler-Distanz]].
+
:$$A\hspace{0.05cm}' =
 
*Um die numerischen Berechnungen in Grenzen zu halten, werden folgende Hilfsgrößen vorgegeben;  hierbei bezeichnet $\rm \lg$ den Logarithmus zur Basis $10$:
 
:$$A' =
 
 
0.4096 \cdot {\rm lg} \hspace{0.1cm} \frac{0.4096}{0.3679} +
 
0.4096 \cdot {\rm lg} \hspace{0.1cm} \frac{0.4096}{0.3679} +
 
0.2048 \cdot {\rm lg} \hspace{0.1cm} \frac{0.2048}{0.1839} +
 
0.2048 \cdot {\rm lg} \hspace{0.1cm} \frac{0.2048}{0.1839} +
Zeile 49: Zeile 55:
 
0.0064 \cdot {\rm lg} \hspace{0.1cm} \frac{0.0064}{0.0153} +
 
0.0064 \cdot {\rm lg} \hspace{0.1cm} \frac{0.0064}{0.0153} +
 
0.0003 \cdot {\rm lg} \hspace{0.1cm} \frac{0.0003}{0.0031} \hspace{0.05cm},$$
 
0.0003 \cdot {\rm lg} \hspace{0.1cm} \frac{0.0003}{0.0031} \hspace{0.05cm},$$
:$$B' =
+
:$$B\hspace{0.05cm}' =
 
0.1839 \cdot {\rm lg} \hspace{0.1cm} (0.1839) +
 
0.1839 \cdot {\rm lg} \hspace{0.1cm} (0.1839) +
 
0.0613 \cdot {\rm lg} \hspace{0.1cm} (0.0613) +
 
0.0613 \cdot {\rm lg} \hspace{0.1cm} (0.0613) +
Zeile 56: Zeile 62:
 
0.0005 \cdot {\rm lg} \hspace{0.1cm} (0.0005) +
 
0.0005 \cdot {\rm lg} \hspace{0.1cm} (0.0005) +
 
0.0001 \cdot {\rm lg} \hspace{0.1cm} (0.0001)$$
 
0.0001 \cdot {\rm lg} \hspace{0.1cm} (0.0001)$$
:$$\Rightarrow \hspace{0.3cm} A'  \hspace{0.15cm} \underline {= 0.021944}  \hspace{0.05cm},\hspace{0.5cm}
+
:$$\Rightarrow \hspace{0.3cm} A\hspace{0.05cm}'  \hspace{0.15cm} \underline {= 0.021944}  \hspace{0.05cm},\hspace{0.5cm}
B'  \hspace{0.15cm} \underline {= -0.24717}  \hspace{0.05cm}.$$
+
B\hspace{0.05cm}'  \hspace{0.15cm} \underline {= -0.24717}  \hspace{0.05cm}.$$
  
  
Zeile 63: Zeile 69:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wie lauten die Kenngrößen der vorliegenden Binomialverteilung?<br> <i>Hinweis:</i> Geben Sie (maximal) eine Nachkommastelle ein.
+
{Wie lauten die Kenngrößen der vorliegenden Binomialverteilung?&nbsp; Hinweis:&nbsp; Geben Sie (maximal) eine Nachkommastelle ein.
 
|type="{}"}
 
|type="{}"}
 
$I \hspace{0.47cm}  = \ $ { 5 3% }
 
$I \hspace{0.47cm}  = \ $ { 5 3% }
Zeile 74: Zeile 80:
 
|type="[]"}
 
|type="[]"}
 
- Keine der beiden Distanzen ist anwendbar.
 
- Keine der beiden Distanzen ist anwendbar.
+ <i>D</i>(<i>P<sub>X</sub></i>||<i>P<sub>Y</sub></i>) ist besser geeignet.
+
+ $D(P_X \hspace{0.05cm}|| \hspace{0.05cm} P_Y)$&nbsp; ist besser geeignet.
- <i>D</i>(<i>P<sub>Y</sub></i>||<i>P<sub>X</sub></i>) ist besser geeignet.
+
- $D(P_Y \hspace{0.05cm}|| \hspace{0.05cm} P_X)$&nbsp; ist besser geeignet.
 
- Beide Kullback&ndash;Leibler&ndash;Distanzen sind anwendbar.
 
- Beide Kullback&ndash;Leibler&ndash;Distanzen sind anwendbar.
  
  
{Berechnen Sie die geeignete Kullback&ndash;Leibler&ndash;Distanz  (hier mit <i>D</i> abgekürzt) für <i>&lambda;</i> = 1. Berücksichtigen Sie die Hilfsgröße $A'$.
+
{Berechnen Sie die geeignete Kullback&ndash;Leibler&ndash;Distanz&nbsp; $($hier mit&nbsp; $D$&nbsp; abgekürzt$)$&nbsp; für &nbsp;$\lambda = 1$.&nbsp; Berücksichtigen Sie die Hilfsgröße &nbsp;$A\hspace{0.05cm}'$.
 
|type="{}"}
 
|type="{}"}
 
$D \ = \ $ { 0.0182 3% } $\ \rm bit$
 
$D \ = \ $ { 0.0182 3% } $\ \rm bit$
  
  
{Berechnen Sie die Entropie <i>H</i>(<i>Y</i>) der Poisson&ndash;Näherung mit der Rate <i>&lambda;</i> = 1.  
+
{Berechnen Sie die Entropie &nbsp;$H(Y)$&nbsp; der Poisson&ndash;Näherung mit der Rate &nbsp;$\lambda = 1$.&nbsp; Berücksichtigen Sie die Hilfsgröße &nbsp;$B\hspace{0.05cm}'$.
Berücksichtigen Sie die Hilfsgröße <i>B</i>&prime;.
 
 
|type="{}"}
 
|type="{}"}
 
$H(Y) \ = \ $ { 1.864 3% } $\ \rm bit$
 
$H(Y) \ = \ $ { 1.864 3% } $\ \rm bit$
Zeile 92: Zeile 97:
 
{Welche der folgenden Aussagen sind zutreffend?
 
{Welche der folgenden Aussagen sind zutreffend?
 
|type="[]"}
 
|type="[]"}
+ Bei der <i>H</i>(<i>Y</i>)&ndash;Berechnung haben alle Terme gleiches Vorzeichen.
+
+ Bei der &nbsp;$H(Y)$&ndash;Berechnung haben alle Terme gleiches Vorzeichen.
- Bei der <i>D</i>(<i>P<sub>X</sub></i>||<i>P<sub>Y</sub></i>)&ndash;Berechnung haben alle Terme gleiches Vorzeichen.
+
- Bei der&nbsp; $D(P_X \hspace{0.05cm}|| \hspace{0.05cm} P_Y)$&ndash;Berechnung haben alle Terme gleiches Vorzeichen.
  
  
 
{Wie interpretieren Sie die vervollständigte Ergebnistabelle?
 
{Wie interpretieren Sie die vervollständigte Ergebnistabelle?
 
|type="[]"}
 
|type="[]"}
+ Nach der Kullback&ndash;Leibler&ndash;Distanz sollte man <i>&lambda;</i> = 1 wählen.
+
+ Nach der Kullback&ndash;Leibler&ndash;Distanz sollte man &nbsp;$\lambda = 1$&nbsp; wählen.
- <i>&lambda;</i> = 1 garantiert auch die beste Approximation <i>H</i>(<i>Y</i>) &asymp; <i>H</i>(<i>X</i>).
+
- $\lambda = 1$&nbsp; garantiert die beste Approximation &nbsp;$H(Y) &asymp; H(X)$.
  
  
Zeile 107: Zeile 112:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Bei der Binomialverteilung sind alle Wahrscheinlichkeiten Pr(<i>X</i> > <i>I</i>) = 0 &nbsp;&#8658;&nbsp; <u><i>I</i> = 5</u>. <br>Damit ergibt sich für die Wahrscheinlichkeit, dass <i>X</i> gleich <i>I</i> = 5 ist:
+
'''(1)'''&nbsp; Bei der Binomialverteilung sind alle Wahrscheinlichkeiten&nbsp; ${\rm Pr}(X > I) = 0$ &nbsp; &#8658; &nbsp; $\underline{I = 5}$.&nbsp; Damit ergibt sich für die Wahrscheinlichkeit, dass&nbsp; $X =I = 5$&nbsp; ist:
 
:$${\rm Pr} (X = 5) = {5 \choose 5} \cdot p^{5} =  p^{5}  \approx 0.0003 \hspace{0.05cm}.$$
 
:$${\rm Pr} (X = 5) = {5 \choose 5} \cdot p^{5} =  p^{5}  \approx 0.0003 \hspace{0.05cm}.$$
 
Somit erhält man für
 
Somit erhält man für
Zeile 114: Zeile 119:
 
* den linearen Mittelwert (Erwartungswert): &nbsp; $m_X = I  \cdot p  \hspace{0.15cm} \underline {= 1}\hspace{0.05cm},$
 
* den linearen Mittelwert (Erwartungswert): &nbsp; $m_X = I  \cdot p  \hspace{0.15cm} \underline {= 1}\hspace{0.05cm},$
 
* die Varianz: &nbsp; $\sigma_X^2 = I  \cdot p \cdot (1-p)  \hspace{0.15cm} \underline {= 0.8}\hspace{0.05cm}.$
 
* die Varianz: &nbsp; $\sigma_X^2 = I  \cdot p \cdot (1-p)  \hspace{0.15cm} \underline {= 0.8}\hspace{0.05cm}.$
 +
 +
  
  
 
'''(2)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 2</u>:
 
'''(2)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 2</u>:
*Bei Verwendung von <i>D</i>(<i>P<sub>Y</sub></i>||<i>P<sub>X</sub></i>) würde sich unabhängig von <i>&lambda;</i> stets ein unendlicher Wert ergeben, da für <i>&mu;</i> &#8805; 6 gilt:
+
*Bei Verwendung von&nbsp; $D(P_Y \hspace{0.05cm}|| \hspace{0.05cm} P_X)$&nbsp; würde sich unabhängig von&nbsp; $&lambda;$&nbsp; stets ein unendlicher Wert ergeben, da für&nbsp; $\mu &#8805; 6$&nbsp; gilt:
 
:$$P_X (X = \mu) = 0 \hspace{0.05cm},\hspace{0.3cm}P_Y (Y = \mu) \ne 0 \hspace{0.05cm}.$$
 
:$$P_X (X = \mu) = 0 \hspace{0.05cm},\hspace{0.3cm}P_Y (Y = \mu) \ne 0 \hspace{0.05cm}.$$
*Auch wenn die Wahrscheinlichkeiten <i>P<sub>Y</sub></i>(<i>Y</i> = <i>&mu;</i>) für große <i>&mu;</i> sehr klein werden, sind sie doch &bdquo;unendlich viel größer&rdquo; als <i>P<sub>X</sub></i>(<i>X</i> = <i>&mu;</i>).
+
*Auch wenn die Wahrscheinlichkeiten&nbsp; $P_Y (Y = \mu)$&nbsp; für große&nbsp; $&mu;$&nbsp; sehr klein werden, sind sie doch &bdquo;unendlich viel größer&rdquo; als&nbsp; $P_X (X = \mu)$.
 +
 
 +
 
  
  
 
'''(3)'''&nbsp; Wir verwenden die erste Kullback&ndash;Leibler&ndash;Distanz:
 
'''(3)'''&nbsp; Wir verwenden die erste Kullback&ndash;Leibler&ndash;Distanz:
 
:$$D = D(P_X \hspace{0.05cm}|| \hspace{0.05cm} P_Y) =\hspace{0.2cm} \sum_{\mu = 0}^{5}  P_X(\mu) \cdot {\rm log}_2 \hspace{0.1cm} \frac{P_X(\mu)}{P_Y(\mu)} \hspace{0.05cm}.$$
 
:$$D = D(P_X \hspace{0.05cm}|| \hspace{0.05cm} P_Y) =\hspace{0.2cm} \sum_{\mu = 0}^{5}  P_X(\mu) \cdot {\rm log}_2 \hspace{0.1cm} \frac{P_X(\mu)}{P_Y(\mu)} \hspace{0.05cm}.$$
Bei Verwendung des Zehnerlogarithmus (&bdquo;lg&rdquo;) erhalten wir für die Poisson&ndash;Näherung mit <i>&lambda;</i> = 1:
+
*Bei Verwendung des Zehnerlogarithmus&nbsp; $(\lg)$&nbsp; erhalten wir für die Poisson&ndash;Näherung mit &nbsp;$\lambda = 1$:
 
:$$D \hspace{0.05cm}' = 0.3277 \cdot {\rm lg} \hspace{0.1cm} \frac{0.3277}{0.3679} + A \hspace{0.05cm}' =  
 
:$$D \hspace{0.05cm}' = 0.3277 \cdot {\rm lg} \hspace{0.1cm} \frac{0.3277}{0.3679} + A \hspace{0.05cm}' =  
 
-0.016468 + 0.021944 = 0.005476 \hspace{0.05cm}.$$
 
-0.016468 + 0.021944 = 0.005476 \hspace{0.05cm}.$$
Nach Umrechnung auf den Zweierlogarithmus (&bdquo;log<sub>2</sub>&rdquo;) erhält man schließlich:
+
*Nach Umrechnung auf den Zweierlogarithmus&nbsp; $(\log_2)$&nbsp;  erhält man schließlich:
:$$D = D(P_X \hspace{0.05cm}|| \hspace{0.05cm} P_Y) = \frac{0.005476}{{\rm lg} \hspace{0.1cm}(2)} \hspace{0.15cm} \underline {\approx 0.0182\,{\rm (bit)}}\hspace{0.05cm}.$$
+
:$$D = D(P_X \hspace{0.05cm}|| \hspace{0.05cm} P_Y) = \frac{0.005476}{{\rm lg} \hspace{0.1cm}(2)} \hspace{0.15cm} \underline {\approx 0.0182\ {\rm (bit)}}\hspace{0.05cm}.$$
 +
 
  
'''(4)'''&nbsp; Unter Verwendung des Zehnerlogarithmus lautet die Entropie der Poisson&ndash;Näherung (<i>&lambda;</i> = 1):
+
'''(4)'''&nbsp; Unter Verwendung des Zehnerlogarithmus lautet die Entropie der Poisson&ndash;Näherung&nbsp; $(\lambda = 1)$:
 
:$$H\hspace{0.05cm}'(Y) = -{\rm E} \left [{\rm lg} \hspace{0.1cm} {P_Y(Y)} \right ]
 
:$$H\hspace{0.05cm}'(Y) = -{\rm E} \left [{\rm lg} \hspace{0.1cm} {P_Y(Y)} \right ]
 
= -2 \cdot 0.3679 \cdot {\rm lg} \hspace{0.1cm} (0.3679) - B\hspace{0.05cm}' = 0.31954 + 0.24717 = 0.56126.$$
 
= -2 \cdot 0.3679 \cdot {\rm lg} \hspace{0.1cm} (0.3679) - B\hspace{0.05cm}' = 0.31954 + 0.24717 = 0.56126.$$
Die Umrechnung in &bdquo;bit&rdquo; liefert das gesuchte Ergebnis:
+
*Die Umrechnung in &bdquo;bit&rdquo; liefert das gesuchte Ergebnis:
 
:$$H(Y) = \frac{0.56126}{{\rm lg} \hspace{0.1cm}(2)}
 
:$$H(Y) = \frac{0.56126}{{\rm lg} \hspace{0.1cm}(2)}
\hspace{0.15cm} \underline {= 1.864\,{\rm (bit)}} \hspace{0.05cm}.$$
+
\hspace{0.15cm} \underline {= 1.864\ {\rm (bit)}} \hspace{0.05cm}.$$
 +
 
 +
 
 +
 
 +
'''(5)'''&nbsp; Richtig ist die <u>Aussage 1</u>.&nbsp; Bei der numerischen Berechnung der Kullback&ndash;Leibler&ndash;Distanz ist
 +
* der Beitrag des&nbsp; $&mu;$&ndash;ten Terms positiv, falls&nbsp; $P_Y(\mu) > P_X(\mu)$,
 +
* der Beitrag des&nbsp; $&mu;$&ndash;ten Terms negativ, falls&nbsp; $P_Y(\mu) < P_X(\mu)$.
 +
 
 +
 
 +
[[Datei:P_ID2761__Inf_A_3_4_C.png|right|frame|Kullback–Leibler–Distanz und Entropie]]
  
'''(5)'''&nbsp; Richtig ist die <u>Aussage 1</u>. Bei der numerischen Berechnung der Kullback&ndash;Leibler&ndash;Distanz ist
 
* der Beitrag des <i>&mu;</i>&ndash;ten Terms positiv, falls <i>P<sub>Y</sub></i>(<i>&mu;</i>) > <i>P<sub>X</sub></i>(<i>&mu;</i>),
 
* der Beitrag des <i>&mu;</i>&ndash;ten Terms negativ, falls <i>P<sub>Y</sub></i>(<i>&mu;</i>) < <i>P<sub>X</sub></i>(<i>&mu;</i>).
 
  
  
[[Datei:P_ID2761__Inf_A_3_4_C.png|right|Kullback–Leibler–Distanz und Entropie]]
 
 
'''(6)'''&nbsp; Zutreffend ist der <u>Lösungsvorschlag 1</u>:  
 
'''(6)'''&nbsp; Zutreffend ist der <u>Lösungsvorschlag 1</u>:  
*Auch aus der Grafik ist ersichtlich, dass <i>D</i>(<i>P<sub>X</sub></i>||<i>P<sub>Y</sub></i>)&nbsp;=&nbsp;0.0182 bit von keinem anderen <i>&lambda;</i>&ndash;Wert als <i>&lambda;</i>&nbsp;=&nbsp;1 unterschritten wird (grüne Kreuze).
+
*Auch aus der Grafik ist ersichtlich, dass&nbsp; $D(P_X \hspace{0.05cm}|| \hspace{0.05cm} P_Y) =0.0182$&nbsp; bit&nbsp; von keinem anderen &nbsp;$&lambda;$&ndash;Wert als &nbsp;$&lambda; = 1$&nbsp; unterschritten wird (grüne Kreuze).
*Weiter erkennt man aus dieser Darstellung, dass man mit <i>&lambda;</i> = 0.9 eine bessere Entropie&ndash;Approximation als mit <i>&lambda;</i> = 1 erreicht  (blaue Kreise):
+
*Weiter erkennt man aus dieser Darstellung, dass man mit &nbsp;$&lambda; = 0.9$&nbsp; eine bessere Entropie&ndash;Approximation als mit &nbsp;$&lambda; = 1$&nbsp; erreicht  (blaue Kreise):
:$$H(Y) = 1.795\,{\rm bit} \hspace{0.15cm}\approx \hspace{0.15cm} H(X) = 1.793\,{\rm bit}\hspace{0.05cm}.$$
+
:$$H(Y) = 1.795\ {\rm bit} \hspace{0.15cm}\approx \hspace{0.15cm} H(X) = 1.793\ {\rm bit}\hspace{0.05cm}.$$
 
:Der zweite Lösungsvorschlag ist also falsch.  
 
:Der zweite Lösungsvorschlag ist also falsch.  
  
Weiter ist anzumerken:
+
* Mit &nbsp;$&lambda; = 1$&nbsp; stimmen die&nbsp; <u>linearen Mittelwerte</u>&nbsp; der beiden Zufallsgrößen  überein:  
* Mit <i>&lambda;</i> = 1 stimmen die <u>linearen</u> Mittelwerte der beiden Zufallsgrößen  überein: <i>m<sub>X</sub></i> = <i>m<sub>Y</sub></i> = 1.
+
:$$m_X = m_Y= 1.$$
* Mit <i>&lambda;</i> = 0.9 stimmen die <u>quadratischen</u> Mittelwerte überein: <i>m<sub>X</sub></i> + <i>&sigma;<sub>X</sub></i><sup>2</sup> = <i>m<sub>Y</sub></i> + <i>&sigma;<sub>Y</sub></i><sup>2</sup> = 1.8.
+
* Mit &nbsp;$&lambda; = 0.9$ stimmen die&nbsp; <u>quadratischen Mittelwerte</u>&nbsp; überein:  
 +
:$$m_X + \sigma_X^2 = m_Y + \sigma_Y^2= 1.8.$$
  
 +
Ob diese Aussage relevant ist, lassen wir dahingestellt.&nbsp;
  
Ob diese Aussage relevant ist, lasse ich dahingestellt. Denn: Aufgrund der stetigen Zunahme von <i>H</i>(<i>Y</i>) mit zunehmendem <i>&lambda;</i> ist klar, dass für irgendeinen <i>&lambda;</i>&ndash;Wert tatsächlich <i>H</i>(<i>Y</i>) = <i>H</i>(<i>X</i>) gelten muss.
+
Denn: &nbsp; Aufgrund der stetigen Zunahme von&nbsp; $H(Y)$&nbsp; mit zunehmendem&nbsp; $&lambda;$&nbsp; ist klar, dass für irgendeinen&nbsp; $&lambda;$&ndash;Wert tatsächlich&nbsp; $H(Y) = H(X)$&nbsp; gelten muss.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Aktuelle Version vom 31. August 2021, 13:34 Uhr

Vorgegebene Wahrscheinlichkeiten

Wir gehen hier von der  Binomialverteilung  aus, die durch die Parameter  $I$  und  $p$  gekennzeichnet ist  
⇒   siehe Buch „Stochastische Signaltheorie”:

  • Wertebereich:
$$X = \{\hspace{0.05cm}0\hspace{0.05cm}, \hspace{0.15cm} 1\hspace{0.05cm},\hspace{0.15cm} 2\hspace{0.05cm},\hspace{0.15cm} \text{...}\hspace{0.1cm} ,\hspace{0.15cm} {\mu}\hspace{0.05cm}, \hspace{0.05cm}\text{...}\hspace{0.1cm} , \hspace{0.15cm} I\hspace{0.05cm}\}\hspace{0.05cm},$$
  • Wahrscheinlichkeiten:
$$P_X (X = \mu) = {I \choose \mu} \cdot p^{\mu} \cdot (1-p)^{I-\mu} \hspace{0.05cm},$$
  • linearer Mittelwert:
$$m_X = I \cdot p \hspace{0.05cm},$$
  • Varianz:
$$\sigma_X^2 = I \cdot p \cdot (1-p)\hspace{0.05cm}.$$

Im rot hinterlegten Teil der Tabelle sind die Wahrscheinlichkeiten  $P_X(X = \mu$)  der betrachteten Binomialverteilung angegeben.  In der Teilaufgabe  (1)  sollen Sie die dazugehörigen Verteilungsparameter  $I$  und  $p$  bestimmen.


Diese vorgegebene Binomialverteilung soll hier durch eine  Poissonverteilung  $Y$  approximiert werden, gekennzeichnet durch die Rate  $\lambda$:

  • Wertebereich:
$$Y = \{\hspace{0.05cm}0\hspace{0.05cm}, \hspace{0.15cm} 1\hspace{0.05cm},\hspace{0.05cm} 2\hspace{0.05cm},\hspace{0.15cm} \text{...}\hspace{0.1cm} ,\hspace{0.15cm} {\mu}\hspace{0.05cm}, \hspace{0.05cm}\text{...}\hspace{0.1cm}\}\hspace{0.05cm},$$
  • Wahrscheinlichkeiten:
$$P_Y (Y = \mu) = \frac{\lambda^{\mu}}{\mu !} \cdot {\rm e}^{-\lambda} \hspace{0.05cm},$$
  • Erwartungswerte:
$$m_Y = \sigma_Y^2 = \lambda\hspace{0.05cm}.$$

Um abschätzen zu können, ob die Wahrscheinlichkeitsfunktion  $P_X(X)$  ausreichend gut durch  $P_Y(Y)$  approximiert wird, kann man auf die so genannten  Kullback–Leibler–Distanzen  $\rm (KLD)$  zurückgreifen, in der Literatur teilweise auch  „relative Entropien”  genannt.

Angepasst an das vorliegende Beispiel lauten diese:

$$D(P_X \hspace{0.05cm}|| \hspace{0.05cm} P_Y) \hspace{0.15cm} = \hspace{0.15cm} {\rm E} \left [ {\rm log}_2 \hspace{0.1cm} \frac{P_X(X)}{P_Y(X)}\right ] \hspace{0.2cm}=\hspace{0.2cm} \sum_{\mu = 0}^{I} P_X(\mu) \cdot {\rm log}_2 \hspace{0.1cm} \frac{P_X(\mu)}{P_Y(\mu)} \hspace{0.05cm},$$
Beiliegende Ergebnistabelle
$$D(P_Y \hspace{0.05cm}|| \hspace{0.05cm} P_X) \hspace{0.15cm} = \hspace{0.15cm} {\rm E} \left [ {\rm log}_2 \hspace{0.1cm} \frac{P_Y(X)}{P_X(X)}\right ] \hspace{0.2cm}=\hspace{0.2cm} \sum_{\mu = 0}^{\infty} P_Y(\mu) \cdot {\rm log}_2 \hspace{0.1cm} \frac{P_Y(\mu)}{P_X(\mu)} \hspace{0.05cm}.$$

Bei Verwendung von  $\log_2$  ist dem Zahlenwert die Pseudo–Einheit „bit” hinzuzufügen.

In nebenstehender Tabelle ist die Kullback–Leibler–Distanz  $D(P_X \hspace{0.05cm}|| \hspace{0.05cm} P_Y)$  (in „bit”)  zwischen der Binomial–PMF  $P_X(\cdot)$  und einigen Poisson–Näherungen  $P_Y(\cdot)$  $($mit fünf verschiedenen Raten $\lambda)$  eingetragen.

  • Die jeweilige Entropie  $H(Y)$, die ebenfalls von der Rate  $\lambda$  abhängt, ist in der ersten Zeile angegeben.
  • Die Spalten für  $\lambda = 1$  sind in den Teilaufgaben  (3)  und (4)  zu ergänzen.
  • In der Teilaufgabe  (6)  sollen diese Ergebnisse interpretiert werden.



Hinweise:

$$A\hspace{0.05cm}' = 0.4096 \cdot {\rm lg} \hspace{0.1cm} \frac{0.4096}{0.3679} + 0.2048 \cdot {\rm lg} \hspace{0.1cm} \frac{0.2048}{0.1839} + 0.0512 \cdot {\rm lg} \hspace{0.1cm} \frac{0.0512}{0.0613} + 0.0064 \cdot {\rm lg} \hspace{0.1cm} \frac{0.0064}{0.0153} + 0.0003 \cdot {\rm lg} \hspace{0.1cm} \frac{0.0003}{0.0031} \hspace{0.05cm},$$
$$B\hspace{0.05cm}' = 0.1839 \cdot {\rm lg} \hspace{0.1cm} (0.1839) + 0.0613 \cdot {\rm lg} \hspace{0.1cm} (0.0613) + 0.0153 \cdot {\rm lg} \hspace{0.1cm} (0.0153) + 0.0031 \cdot {\rm lg} \hspace{0.1cm} (0.0031) + 0.0005 \cdot {\rm lg} \hspace{0.1cm} (0.0005) + 0.0001 \cdot {\rm lg} \hspace{0.1cm} (0.0001)$$
$$\Rightarrow \hspace{0.3cm} A\hspace{0.05cm}' \hspace{0.15cm} \underline {= 0.021944} \hspace{0.05cm},\hspace{0.5cm} B\hspace{0.05cm}' \hspace{0.15cm} \underline {= -0.24717} \hspace{0.05cm}.$$


Fragebogen

1

Wie lauten die Kenngrößen der vorliegenden Binomialverteilung?  Hinweis:  Geben Sie (maximal) eine Nachkommastelle ein.

$I \hspace{0.47cm} = \ $

$p \hspace{0.47cm} = \ $

$m_x \ = \ $

$\sigma^2_x \hspace{0.25cm} = \ $

2

Welche Kullback–Leibler–Distanz sollte man hier verwenden?

Keine der beiden Distanzen ist anwendbar.
$D(P_X \hspace{0.05cm}|| \hspace{0.05cm} P_Y)$  ist besser geeignet.
$D(P_Y \hspace{0.05cm}|| \hspace{0.05cm} P_X)$  ist besser geeignet.
Beide Kullback–Leibler–Distanzen sind anwendbar.

3

Berechnen Sie die geeignete Kullback–Leibler–Distanz  $($hier mit  $D$  abgekürzt$)$  für  $\lambda = 1$.  Berücksichtigen Sie die Hilfsgröße  $A\hspace{0.05cm}'$.

$D \ = \ $

$\ \rm bit$

4

Berechnen Sie die Entropie  $H(Y)$  der Poisson–Näherung mit der Rate  $\lambda = 1$.  Berücksichtigen Sie die Hilfsgröße  $B\hspace{0.05cm}'$.

$H(Y) \ = \ $

$\ \rm bit$

5

Welche der folgenden Aussagen sind zutreffend?

Bei der  $H(Y)$–Berechnung haben alle Terme gleiches Vorzeichen.
Bei der  $D(P_X \hspace{0.05cm}|| \hspace{0.05cm} P_Y)$–Berechnung haben alle Terme gleiches Vorzeichen.

6

Wie interpretieren Sie die vervollständigte Ergebnistabelle?

Nach der Kullback–Leibler–Distanz sollte man  $\lambda = 1$  wählen.
$\lambda = 1$  garantiert die beste Approximation  $H(Y) ≈ H(X)$.


Musterlösung

(1)  Bei der Binomialverteilung sind alle Wahrscheinlichkeiten  ${\rm Pr}(X > I) = 0$   ⇒   $\underline{I = 5}$.  Damit ergibt sich für die Wahrscheinlichkeit, dass  $X =I = 5$  ist:

$${\rm Pr} (X = 5) = {5 \choose 5} \cdot p^{5} = p^{5} \approx 0.0003 \hspace{0.05cm}.$$

Somit erhält man für

  • die charakteristische Wahrscheinlichkeit:   $p= (0.0003)^{1/5} = 0.1974 \hspace{0.15cm} \underline {\approx 0.2}\hspace{0.05cm},$
  • den linearen Mittelwert (Erwartungswert):   $m_X = I \cdot p \hspace{0.15cm} \underline {= 1}\hspace{0.05cm},$
  • die Varianz:   $\sigma_X^2 = I \cdot p \cdot (1-p) \hspace{0.15cm} \underline {= 0.8}\hspace{0.05cm}.$



(2)  Richtig ist der Lösungsvorschlag 2:

  • Bei Verwendung von  $D(P_Y \hspace{0.05cm}|| \hspace{0.05cm} P_X)$  würde sich unabhängig von  $λ$  stets ein unendlicher Wert ergeben, da für  $\mu ≥ 6$  gilt:
$$P_X (X = \mu) = 0 \hspace{0.05cm},\hspace{0.3cm}P_Y (Y = \mu) \ne 0 \hspace{0.05cm}.$$
  • Auch wenn die Wahrscheinlichkeiten  $P_Y (Y = \mu)$  für große  $μ$  sehr klein werden, sind sie doch „unendlich viel größer” als  $P_X (X = \mu)$.



(3)  Wir verwenden die erste Kullback–Leibler–Distanz:

$$D = D(P_X \hspace{0.05cm}|| \hspace{0.05cm} P_Y) =\hspace{0.2cm} \sum_{\mu = 0}^{5} P_X(\mu) \cdot {\rm log}_2 \hspace{0.1cm} \frac{P_X(\mu)}{P_Y(\mu)} \hspace{0.05cm}.$$
  • Bei Verwendung des Zehnerlogarithmus  $(\lg)$  erhalten wir für die Poisson–Näherung mit  $\lambda = 1$:
$$D \hspace{0.05cm}' = 0.3277 \cdot {\rm lg} \hspace{0.1cm} \frac{0.3277}{0.3679} + A \hspace{0.05cm}' = -0.016468 + 0.021944 = 0.005476 \hspace{0.05cm}.$$
  • Nach Umrechnung auf den Zweierlogarithmus  $(\log_2)$  erhält man schließlich:
$$D = D(P_X \hspace{0.05cm}|| \hspace{0.05cm} P_Y) = \frac{0.005476}{{\rm lg} \hspace{0.1cm}(2)} \hspace{0.15cm} \underline {\approx 0.0182\ {\rm (bit)}}\hspace{0.05cm}.$$


(4)  Unter Verwendung des Zehnerlogarithmus lautet die Entropie der Poisson–Näherung  $(\lambda = 1)$:

$$H\hspace{0.05cm}'(Y) = -{\rm E} \left [{\rm lg} \hspace{0.1cm} {P_Y(Y)} \right ] = -2 \cdot 0.3679 \cdot {\rm lg} \hspace{0.1cm} (0.3679) - B\hspace{0.05cm}' = 0.31954 + 0.24717 = 0.56126.$$
  • Die Umrechnung in „bit” liefert das gesuchte Ergebnis:
$$H(Y) = \frac{0.56126}{{\rm lg} \hspace{0.1cm}(2)} \hspace{0.15cm} \underline {= 1.864\ {\rm (bit)}} \hspace{0.05cm}.$$


(5)  Richtig ist die Aussage 1.  Bei der numerischen Berechnung der Kullback–Leibler–Distanz ist

  • der Beitrag des  $μ$–ten Terms positiv, falls  $P_Y(\mu) > P_X(\mu)$,
  • der Beitrag des  $μ$–ten Terms negativ, falls  $P_Y(\mu) < P_X(\mu)$.


Kullback–Leibler–Distanz und Entropie


(6)  Zutreffend ist der Lösungsvorschlag 1:

  • Auch aus der Grafik ist ersichtlich, dass  $D(P_X \hspace{0.05cm}|| \hspace{0.05cm} P_Y) =0.0182$  bit  von keinem anderen  $λ$–Wert als  $λ = 1$  unterschritten wird (grüne Kreuze).
  • Weiter erkennt man aus dieser Darstellung, dass man mit  $λ = 0.9$  eine bessere Entropie–Approximation als mit  $λ = 1$  erreicht (blaue Kreise):
$$H(Y) = 1.795\ {\rm bit} \hspace{0.15cm}\approx \hspace{0.15cm} H(X) = 1.793\ {\rm bit}\hspace{0.05cm}.$$
Der zweite Lösungsvorschlag ist also falsch.
  • Mit  $λ = 1$  stimmen die  linearen Mittelwerte  der beiden Zufallsgrößen überein:
$$m_X = m_Y= 1.$$
  • Mit  $λ = 0.9$ stimmen die  quadratischen Mittelwerte  überein:
$$m_X + \sigma_X^2 = m_Y + \sigma_Y^2= 1.8.$$

Ob diese Aussage relevant ist, lassen wir dahingestellt. 

Denn:   Aufgrund der stetigen Zunahme von  $H(Y)$  mit zunehmendem  $λ$  ist klar, dass für irgendeinen  $λ$–Wert tatsächlich  $H(Y) = H(X)$  gelten muss.