Aufgaben:Aufgabe 4.4: Herkömmliche Entropie und differenzielle Entropie: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(6 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 4: Zeile 4:
  
 
[[Datei:P_ID2878__Inf_A_4_4.png|right|frame|Zweimal Gleichverteilung]]
 
[[Datei:P_ID2878__Inf_A_4_4.png|right|frame|Zweimal Gleichverteilung]]
Wir betrachten die zwei wertkontinuierlichen Zufallsgrößen $X$ und $Y$ mit den Wahrscheinlichkeitsdichtefunktionen $f_X(x)$ und $f_Y(y)$. Für diese Zufallsgrößen kann man
+
Wir betrachten die beiden wertkontinuierlichen Zufallsgrößen  $X$  und  $Y$  mit den Wahrscheinlichkeitsdichtefunktionen $f_X(x)$  und $f_Y(y)$.  Für diese Zufallsgrößen kann man
* die herkömmlichen Entropien $H(X)$ bzw. $H(Y)$ nicht angeben,
+
* die herkömmlichen Entropien  $H(X)$  bzw.  $H(Y)$  nicht angeben,
* jedoch aber die differentiellen Entropien $h(X)$ und $h(Y)$.
+
* jedoch aber die differentiellen Entropien  $h(X)$  und  $h(Y)$.
  
  
 
Wir betrachten außerdem zwei wertdiskrete Zufallsgrößen:
 
Wir betrachten außerdem zwei wertdiskrete Zufallsgrößen:
*Die Zufallsgröße $Z_{X,\hspace{0.05cm}M}$ ergibt sich durch (geeignete) Quantisierung der Zufallsgröße $X$ mit der Quantisierungsstufenzahl $N$   ⇒   Quantisierungsintervallbreite ${\it \Delta} = 0.5/M$.
+
*Die Zufallsgröße&nbsp; $Z_{X,\hspace{0.05cm}M}$&nbsp; ergibt sich durch (geeignete) Quantisierung der Zufallsgröße&nbsp; $X$&nbsp; mit der Quantisierungsstufenzahl&nbsp; $M$  <br>&#8658; &nbsp; Quantisierungsintervallbreite&nbsp; ${\it \Delta} = 0.5/M$.
* Die Zufallsgröße $Z_{Y,\hspace{0.05cm}M}$ ergibt sich nach Quantisierung der Zufallsgröße $Y$ mit der Quantisierungsstufenzahl $M$ &nbsp; &#8658; &nbsp; Quantisierungsintervallbreite ${\it \Delta} = 2/M$.
+
* Die Zufallsgröße&nbsp; $Z_{Y,\hspace{0.05cm}M}$&nbsp; ergibt sich nach Quantisierung der Zufallsgröße&nbsp; $Y$&nbsp; mit der Quantisierungsstufenzahl&nbsp; $M$ &nbsp; <br>&#8658; &nbsp; Quantisierungsintervallbreite&nbsp; ${\it \Delta} = 2/M$.
  
  
Die Wahrscheinlichkeitsdichtefunktionen dieser diskreten Zufallsgrößen setzen sich jeweils aus $M$ Diracfunktionen zusammen, deren Impulsgewichte durch die Intervallflächen der zugehörigen wertkontinuierlichen Zufallsgrößen gegeben sind.  
+
Die Wahrscheinlichkeitsdichtefunktionen dieser diskreten Zufallsgrößen setzen sich jeweils aus&nbsp; $M$&nbsp; Diracfunktionen zusammen, deren Impulsgewichte durch die Intervallflächen der zugehörigen wertkontinuierlichen Zufallsgrößen gegeben sind.  
  
Daraus lassen sich die Entropien $H(Z_{X,\hspace{0.05cm}M})$ und $H(Z_{Y,\hspace{0.05cm}M})$ in herkömmlicher Weise entsprechend dem Kapitel&nbsp; [[Informationstheorie/Einige_Vorbemerkungen_zu_zweidimensionalen_Zufallsgrößen#Wahrscheinlichkeitsfunktion_und_Entropie|Wahrscheinlichkeitsfunktion und Entropie]] bestimmen.
+
Daraus lassen sich die Entropien&nbsp; $H(Z_{X,\hspace{0.05cm}M})$&nbsp; und&nbsp; $H(Z_{Y,\hspace{0.05cm}M})$&nbsp; in herkömmlicher Weise entsprechend dem Kapitel&nbsp; [[Informationstheorie/Einige_Vorbemerkungen_zu_zweidimensionalen_Zufallsgrößen#Wahrscheinlichkeitsfunktion_und_Entropie|Wahrscheinlichkeitsfunktion und Entropie]]&nbsp; bestimmen.
  
Im Abschnitt [[Informationstheorie/Differentielle_Entropie#Entropie_wertkontinuierlicher_Zufallsgr.C3.B6.C3.9Fen_nach_Quantisierung|Entropie wertkontinuierlicher Zufallsgrößen nach Quantisierung]] wurde auch eine Näherung angegeben. Beispielsweise gilt:
+
Im Abschnitt&nbsp; [[Informationstheorie/Differentielle_Entropie#Entropie_wertkontinuierlicher_Zufallsgr.C3.B6.C3.9Fen_nach_Quantisierung|Entropie wertkontinuierlicher Zufallsgrößen nach Quantisierung]]&nbsp; wurde auch eine Näherung angegeben.&nbsp; Beispielsweise gilt:
 
:$$H(Z_{X, \hspace{0.05cm}M}) \approx  -{\rm log}_2 \hspace{0.1cm} ({\it \Delta}) + h(X)\hspace{0.05cm}. $$
 
:$$H(Z_{X, \hspace{0.05cm}M}) \approx  -{\rm log}_2 \hspace{0.1cm} ({\it \Delta}) + h(X)\hspace{0.05cm}. $$
  
*Sie werden im Laufe der Aufgabe feststellen, dass bei rechteckförmiger WDF &nbsp; &#8658; &nbsp; Gleichverteilung diese &bdquo;Näherung&rdquo; genau das gleiche Ergebnis liefert wie die direkte Berechnung.
+
*Im Laufe der Aufgabe wird sich zeigen, dass bei rechteckförmiger WDF &nbsp; &#8658; &nbsp; Gleichverteilung diese &bdquo;Näherung&rdquo; das gleiche Ergebnis liefert wie die direkte Berechnung.
*Aber im allgemeinen Fall &ndash; so im [[Informationstheorie/Differentielle_Entropie#Entropie_wertkontinuierlicher_Zufallsgr.C3.B6.C3.9Fen_nach_Quantisierung|Beispiel 2 mit dreieckförmiger WDF]] &ndash; stellt obige Gleichung tatsächlich nur eine Näherung dar, die erst im Grenzfall ${\it \Delta} \to 0$ mit der tatsächlichen Entropie  $H(Z_{X,\hspace{0.05cm}M})$ übereinstimmt.
+
*Aber im allgemeinen Fall &ndash; so im&nbsp; [[Informationstheorie/Differentielle_Entropie#Entropie_wertkontinuierlicher_Zufallsgr.C3.B6.C3.9Fen_nach_Quantisierung|$\text{Beispiel 2}$]]&nbsp; mit dreieckförmiger WDF &ndash; stellt obige Gleichung tatsächlich nur eine Näherung dar, die erst im Grenzfall&nbsp; ${\it \Delta} \to 0$&nbsp; mit der tatsächlichen Entropie&nbsp; $H(Z_{X,\hspace{0.05cm}M})$&nbsp; übereinstimmt.
 +
 
 +
 
 +
 
  
  
Zeile 30: Zeile 33:
  
 
''Hinweise:''  
 
''Hinweise:''  
*Die Aufgabe gehört zum  Kapitel [[Informationstheorie/Differentielle_Entropie|Differentielle Entropie]].
+
*Die Aufgabe gehört zum  Kapitel&nbsp; [[Informationstheorie/Differentielle_Entropie|Differentielle Entropie]].
*Nützliche Hinweise zur Lösung dieser Aufgabe finden Sie insbesondere auf der Seite  [[Informationstheorie/Differentielle_Entropie#Entropie_wertkontinuierlicher_Zufallsgr.C3.B6.C3.9Fen_nach_Quantisierung|Entropie wertkontinuierlicher Zufallsgrößen nach Quantisierung]] .
+
*Nützliche Hinweise zur Lösung dieser Aufgabe finden Sie insbesondere auf der Seite&nbsp; [[Informationstheorie/Differentielle_Entropie#Entropie_wertkontinuierlicher_Zufallsgr.C3.B6.C3.9Fen_nach_Quantisierung|Entropie wertkontinuierlicher Zufallsgrößen nach Quantisierung]] .
 
   
 
   
  
Zeile 39: Zeile 42:
 
<quiz display=simple>
 
<quiz display=simple>
  
{Berechnen Sie die differentielle Entropie $h(X)$.
+
{Berechnen Sie die differentielle Entropie&nbsp; $h(X)$.
 
|type="{}"}
 
|type="{}"}
 
$ h(X) \ = \ $ { -1.03--0.97 } $\ \rm bit$
 
$ h(X) \ = \ $ { -1.03--0.97 } $\ \rm bit$
Zeile 47: Zeile 50:
 
$ h(Y) \ = \ $  { 1 3% } $\ \rm bit$
 
$ h(Y) \ = \ $  { 1 3% } $\ \rm bit$
  
{Berechnen Sie die Entropie der wertdiskreten Zufallsgrößen $Z_{X,\hspace{0.05cm}M=4}$ <u>nach der direkten Methode</u>.
+
{Berechnen Sie die Entropie der wertdiskreten Zufallsgrößen&nbsp; $Z_{X,\hspace{0.05cm}M=4}$&nbsp; nach der direkten Methode</u>.
 
|type="{}"}
 
|type="{}"}
 
$H(Z_{X,\hspace{0.05cm}M=4})\ = \ $ { 2 3% } $\ \rm bit$
 
$H(Z_{X,\hspace{0.05cm}M=4})\ = \ $ { 2 3% } $\ \rm bit$
  
{Berechnen Sie die Entropie der wertdiskreten Zufallsgrößen $Z_{X,\hspace{0.05cm}M=4}$ <u>mit der angegebenen Näherung</u>.
+
{Berechnen Sie die Entropie der wertdiskreten Zufallsgrößen&nbsp; $Z_{X,\hspace{0.05cm}M=4}$&nbsp; mit der angegebenen Näherung</u>.
 
|type="{}"}
 
|type="{}"}
 
$H(Z_{X,\hspace{0.05cm}M=4})\ = \ $ { 2 3% } $\ \rm bit$
 
$H(Z_{X,\hspace{0.05cm}M=4})\ = \ $ { 2 3% } $\ \rm bit$
  
{Berechnen Sie die Entropie der wertdiskreten Zufallsgröße $Z_{Y,\hspace{0.05cm}M=4}$ <u>mit der angegebenen Näherung</u>.
+
{Berechnen Sie die Entropie der wertdiskreten Zufallsgröße&nbsp; $Z_{Y,\hspace{0.05cm}M=8}$&nbsp; mit der angegebenen Näherung</u>.
|type="{}"}
 
$H(Z_{Y,\hspace{0.05cm}M=4})\ = \ $ { 2 3% } $\ \rm bit$
 
 
 
{Berechnen Sie die Entropie der wertdiskreten Zufallsgröße $Z_{Y,\hspace{0.05cm}M=8}$ <u>mit der angegebenen Näherung</u>.
 
 
|type="{}"}
 
|type="{}"}
 
$H(Z_{Y,\hspace{0.05cm}M=8})\ = \ $ { 3 3% } $\ \rm bit$
 
$H(Z_{Y,\hspace{0.05cm}M=8})\ = \ $ { 3 3% } $\ \rm bit$
Zeile 65: Zeile 64:
 
{Welche der folgenden Aussagen sind zutreffend?
 
{Welche der folgenden Aussagen sind zutreffend?
 
|type="[]"}
 
|type="[]"}
+ Die Entropie einer wertdiskreten Zufallsgröße $Z$ ist stets $H(Z) \ge 0$.
+
+ Die Entropie einer wertdiskreten Zufallsgröße&nbsp; $Z$&nbsp; ist stets&nbsp; $H(Z) \ge 0$.
- Die differenzielle Entropie einer wertkontinuierlichen Zufallsgröße $X$ ist stets $h(X) \ge 0$.
+
- Die differenzielle Entropie einer wertkontinuierlichen Zufallsgröße&nbsp; $X$&nbsp; ist stets&nbsp; $h(X) \ge 0$.
  
  
Zeile 74: Zeile 73:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Gemäß der entsprechenden Theorieseite gilt mit <i>x</i><sub>min</sub> = 0 und <i>x</i><sub>max</sub> = 1/2:
+
'''(1)'''&nbsp; Gemäß der entsprechenden Theorieseite gilt mit &nbsp;$x_{\rm min} = 0$&nbsp; und &nbsp;$x_{\rm max} = 1/2$:
 
:$$h(X) = {\rm log}_2 \hspace{0.1cm} (x_{\rm max} - x_{\rm min}) = {\rm log}_2 \hspace{0.1cm} (1/2) \hspace{0.15cm}\underline{= - 1\,{\rm bit}}\hspace{0.05cm}.$$
 
:$$h(X) = {\rm log}_2 \hspace{0.1cm} (x_{\rm max} - x_{\rm min}) = {\rm log}_2 \hspace{0.1cm} (1/2) \hspace{0.15cm}\underline{= - 1\,{\rm bit}}\hspace{0.05cm}.$$
  
'''(2)'''&nbsp; Mit <i>y</i><sub>min</sub> = &ndash;1 und <i>y</i><sub>max</sub> = +1 ergibt sich dagegen für die differentielle Entropie der Zufallsgröße <i>Y</i>:
 
:$$h(Y) = {\rm log}_2 \hspace{0.1cm} (x_{\rm max} - x_{\rm min}) = {\rm log}_2 \hspace{0.1cm} (2) \hspace{0.15cm}\underline{= + 1\,{\rm bit}}\hspace{0.05cm}. $$
 
  
[[Datei:P_ID2879__Inf_A_4_4c.png|right|frame|Quantisierte Zufallsgröße  <i>Z<sub>X, M</sub></i><sub> = 4</sub>]]
+
 
'''(3)'''&nbsp; Die nebenstehende Grafik verdeutlicht die bestmögliche Quantisierung der Zufallsgröße <i>X</i> mit der Quantisierungsstufenzahl <i>M</i> = 4 &nbsp;&#8658;&nbsp; Zufallsgröße <i>Z<sub>X,\hspace{0.05cm} M</sub></i><sub> = 4</sub>:
+
'''(2)'''&nbsp; Mit &nbsp;$y_{\rm min} = -1$&nbsp; und &nbsp;$y_{\rm max} = +1$&nbsp; ergibt sich dagegen für die differentielle Entropie der Zufallsgröße&nbsp; $Y$:
*Die Intervallbreite ist hier gleich <i>&Delta;</i> = 0.5/4 = 1/8.
+
:$$h(Y) = {\rm log}_2 \hspace{0.1cm} (y_{\rm max} - y_{\rm min}) = {\rm log}_2 \hspace{0.1cm} (2) \hspace{0.15cm}\underline{= + 1\,{\rm bit}}\hspace{0.05cm}. $$
*Die möglichen Werte (jeweils in der Intervallmitte) sind <i>z</i>&nbsp;&#8712; {0.0625,&nbsp;0.1875,&nbsp;0.3125,&nbsp;0.4375}.
+
 
*Die <u>direkte Entropieberechnung</u> ergibt mit der Wahrscheinlichkeitsfunktion <i>P<sub>Z</sub></i>(<i>Z</i>)&nbsp;=&nbsp;[1/4,&nbsp;... ,&nbsp;1/4]:
+
 
:$$H(Z_{X, M = 4}) = {\rm log}_2 \hspace{0.1cm} (4) \hspace{0.15cm}\underline{= 2\,{\rm bit}}
+
 
 +
[[Datei:P_ID2879__Inf_A_4_4c.png|right|frame|Quantisierte Zufallsgröße&nbsp; $Z_{X, \ M = 4}$]]
 +
'''(3)'''&nbsp; Die nebenstehende Grafik verdeutlicht die bestmögliche Quantisierung der Zufallsgröße&nbsp; $X$&nbsp; mit der Quantisierungsstufenzahl&nbsp; $M = 4$&nbsp; &nbsp; &#8658; &nbsp; Zufallsgröße&nbsp; $Z_{X, \ M = 4}$:
 +
*Die Intervallbreite ist hier gleich &nbsp;${\it \Delta} = 0.5/4 = 1/8$.
 +
*Die möglichen Werte&nbsp; (jeweils in der Intervallmitte)&nbsp; sind &nbsp;$z \in \{0.0625,\ 0.1875,\ 0.3125,\ 0.4375\}$.
 +
 
 +
 
 +
Die <u>direkte Entropieberechnung</u> ergibt mit der Wahrscheinlichkeitsfunktion $P_Z(Z) = \big [1/4,\ \text{...} , \ 1/4 \big]$:
 +
:$$H(Z_{X, \ M = 4}) = {\rm log}_2 \hspace{0.1cm} (4) \hspace{0.15cm}\underline{= 2\,{\rm bit}}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
'''(4)'''&nbsp; Mit der <u>Näherung</u> erhält man unter Berücksichtigung des Ergebnisses der Teilaufgabe (1):
+
Mit der <u>Näherung</u> erhält man unter Berücksichtigung des Ergebnisses von&nbsp; '''(1)''':
 
:$$H(Z_{X,\hspace{0.05cm} M = 4}) \approx  -{\rm log}_2 \hspace{0.1cm} ({\it \Delta}) + h(X) =  
 
:$$H(Z_{X,\hspace{0.05cm} M = 4}) \approx  -{\rm log}_2 \hspace{0.1cm} ({\it \Delta}) + h(X) =  
 
3\,{\rm bit} +(- 1\,{\rm bit})\hspace{0.15cm}\underline{= 2\,{\rm bit}}\hspace{0.05cm}. $$
 
3\,{\rm bit} +(- 1\,{\rm bit})\hspace{0.15cm}\underline{= 2\,{\rm bit}}\hspace{0.05cm}. $$
<i>Hinweis:</i> Nur bei der Gleichverteilung liefert die Näherung genau das gleiche Ergebnis wie die direkte Berechnung, also die tatsächliche Entropie.
+
<u>Hinweis:</u>&nbsp; Nur bei der Gleichverteilung liefert die Näherung genau das gleiche Ergebnis wie die direkte Berechnung, also die tatsächliche Entropie.
  
[[Datei:P_ID2880__Inf_A_4_4d.png|right|frame|Quantisierte Zufallsgröße <i>Z<sub>Y, M</sub></i><sub> = 4</sub>]]
+
[[Datei:P_ID2880__Inf_A_4_4d.png|right|frame|Quantisierte Zufallsgröße $Z_{Y, \ M = 4}$]]
 
<br>
 
<br>
'''(5)'''&nbsp; Aus der zweiten Grafik erkennt man die Gemeinsamkeiten / Unterschiede zur Teilaufgabe (3):
+
'''(4)'''&nbsp; Aus der zweiten Grafik erkennt man die Gemeinsamkeiten / Unterschiede zur Teilaufgabe&nbsp; '''(3)''':
:* Der Quantisierungsparameter ist nun <i>&Delta;</i> = 2/4 = 1/2.
+
* Der Quantisierungsparameter ist nun &nbsp;${\it \Delta= 2/4 = 1/2$.
:* Die möglichen Werte sind nun <i>z</i> &#8712; {&plusmn;0.75, &plusmn;0.25}.
+
* Die möglichen Werte sind nun &nbsp;$z \in \{\pm 0.75,\ \pm 0.25\}$.
:* Somit liefert hier die &bdquo;Näherung&rdquo; (ebenso wie die direkte Berechnung) das Ergebnis:
+
* Somit liefert hier die &bdquo;Näherung&rdquo;&nbsp; (ebenso wie die direkte Berechnung)&nbsp; das Ergebnis:
 
:$$H(Z_{Y,\hspace{0.05cm} M = 4})  \approx    -{\rm log}_2 \hspace{0.1cm} ({\it \Delta}) + h(Y) =
 
:$$H(Z_{Y,\hspace{0.05cm} M = 4})  \approx    -{\rm log}_2 \hspace{0.1cm} ({\it \Delta}) + h(Y) =
 
     1\,{\rm bit} + 1\,{\rm bit}\hspace{0.15cm}\underline{= 2\,{\rm bit}}\hspace{0.05cm}.$$
 
     1\,{\rm bit} + 1\,{\rm bit}\hspace{0.15cm}\underline{= 2\,{\rm bit}}\hspace{0.05cm}.$$
[[Datei:P_ID2881__Inf_A_4_4e.png|right|frame|Quantisierte Zufallsgröße  <i>Z<sub>Y, M</sub></i><sub> = 8</sub>]]
+
 
<br><br>
+
 
'''(6)'''&nbsp; Im Gegensatz zur Teilaufgabe (5) gilt nun <i>&Delta;</i> = 1/4. Daraus folgt für die &bdquo;Näherung&rdquo;:
+
[[Datei:P_ID2881__Inf_A_4_4e.png|right|frame|Quantisierte Zufallsgröße&nbsp; $Z_{Y, \ M = 8}$]]
 +
'''(5)'''&nbsp; Im Gegensatz zur Teilaufgabe&nbsp; '''(4)'''&nbsp; gilt nun &nbsp;${\it \Delta= 1/4$.&nbsp; Daraus folgt für die &bdquo;Näherung&rdquo;:
 
:$$H(Z_{Y,\hspace{0.05cm} M = 8})  \approx    -{\rm log}_2 \hspace{0.1cm} ({\it \Delta}) + h(Y) =  
 
:$$H(Z_{Y,\hspace{0.05cm} M = 8})  \approx    -{\rm log}_2 \hspace{0.1cm} ({\it \Delta}) + h(Y) =  
 
2\,{\rm bit} + 1\,{\rm bit}\hspace{0.15cm}\underline{= 3\,{\rm bit}}\hspace{0.05cm}.$$
 
2\,{\rm bit} + 1\,{\rm bit}\hspace{0.15cm}\underline{= 3\,{\rm bit}}\hspace{0.05cm}.$$
Wieder gleiches Ergebnis bei direkter Berechnung.
+
Man erhält wieder das gleiche Ergebnis wie bei der direkten Berechnung.
  
  
'''(7)'''&nbsp; Richtig ist nur die <u>Aussage 1</u>:
+
'''(6)'''&nbsp; Richtig ist nur die <u>Aussage 1</u>:
:* Die Entropie <i>H</i>(<i>Z</i>) einer diskreten Zufallsgröße <i>Z</i>&nbsp;=&nbsp;{<i>z</i><sub>1</sub>,&nbsp;... , <i>z<sub>M</sub></i>} kann nie negativ werden. Der Grenzfall <i>H</i>(<i>Z</i>) = 0 ergibt sich zum Beispiel für Pr(<i>Z</i>&nbsp;=&nbsp;<i>z</i><sub>1</sub>)&nbsp;=&nbsp;1 und Pr(<i>Z</i>&nbsp;=&nbsp;<i>z<sub>&mu;</sub></i>)&nbsp;=&nbsp;0&nbsp;für 2&nbsp;&#8804;&nbsp;<i>&mu;</i>&nbsp;&#8804;&nbsp;<i>M</i>.
+
* Die Entropie&nbsp; $H(Z)$&nbsp; einer diskreten Zufallsgröße&nbsp; $Z = \{z_1, \ \text{...} \ , z_M\}$&nbsp; ist nie negativ.  
 +
*Der Grenzfall&nbsp; $H(Z) = 0$&nbsp; ergibt sich zum Beispiel für &nbsp;${\rm Pr}(Z = z_1) = 1$&nbsp; und &nbsp;${\rm Pr}(Z = z_\mu) = 0$&nbsp; für &nbsp;$2 \le \mu \le M$.
  
:* Dagegen kann die differentielle Entropie <i>h</i>(<i>X</i>) einer kontinuierlichen Zufallsgröße <i>X</i> negativ (Teilaufgabe 1), positiv (Teilaufgabe 2) oder auch <i>h</i>(<i>X</i>) = 0 ( zum Beispiel <i>x</i><sub>min</sub> = 0, <i>x</i><sub>max</sub> = 1) sein.
+
* Dagegen kann die differentielle Entropie&nbsp; $h(X)$&nbsp; einer wertkontinuierlichen Zufallsgröße&nbsp; $X$&nbsp; wie folgt sein:
 +
** $h(X) < 0$&nbsp; $($Teilaufgabe 1$)$,  
 +
** $h(X) > 0$&nbsp; $($Teilaufgabe 2$)$, oder auch  
 +
**$h(X) = 0$&nbsp;  $($zum Beispiel für &nbsp;$x_{\rm min} = 0$&nbsp; und  &nbsp;$x_{\rm max} = 1)$.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Aktuelle Version vom 28. September 2021, 14:16 Uhr

Zweimal Gleichverteilung

Wir betrachten die beiden wertkontinuierlichen Zufallsgrößen  $X$  und  $Y$  mit den Wahrscheinlichkeitsdichtefunktionen $f_X(x)$  und $f_Y(y)$.  Für diese Zufallsgrößen kann man

  • die herkömmlichen Entropien  $H(X)$  bzw.  $H(Y)$  nicht angeben,
  • jedoch aber die differentiellen Entropien  $h(X)$  und  $h(Y)$.


Wir betrachten außerdem zwei wertdiskrete Zufallsgrößen:

  • Die Zufallsgröße  $Z_{X,\hspace{0.05cm}M}$  ergibt sich durch (geeignete) Quantisierung der Zufallsgröße  $X$  mit der Quantisierungsstufenzahl  $M$
    ⇒   Quantisierungsintervallbreite  ${\it \Delta} = 0.5/M$.
  • Die Zufallsgröße  $Z_{Y,\hspace{0.05cm}M}$  ergibt sich nach Quantisierung der Zufallsgröße  $Y$  mit der Quantisierungsstufenzahl  $M$  
    ⇒   Quantisierungsintervallbreite  ${\it \Delta} = 2/M$.


Die Wahrscheinlichkeitsdichtefunktionen dieser diskreten Zufallsgrößen setzen sich jeweils aus  $M$  Diracfunktionen zusammen, deren Impulsgewichte durch die Intervallflächen der zugehörigen wertkontinuierlichen Zufallsgrößen gegeben sind.

Daraus lassen sich die Entropien  $H(Z_{X,\hspace{0.05cm}M})$  und  $H(Z_{Y,\hspace{0.05cm}M})$  in herkömmlicher Weise entsprechend dem Kapitel  Wahrscheinlichkeitsfunktion und Entropie  bestimmen.

Im Abschnitt  Entropie wertkontinuierlicher Zufallsgrößen nach Quantisierung  wurde auch eine Näherung angegeben.  Beispielsweise gilt:

$$H(Z_{X, \hspace{0.05cm}M}) \approx -{\rm log}_2 \hspace{0.1cm} ({\it \Delta}) + h(X)\hspace{0.05cm}. $$
  • Im Laufe der Aufgabe wird sich zeigen, dass bei rechteckförmiger WDF   ⇒   Gleichverteilung diese „Näherung” das gleiche Ergebnis liefert wie die direkte Berechnung.
  • Aber im allgemeinen Fall – so im  $\text{Beispiel 2}$  mit dreieckförmiger WDF – stellt obige Gleichung tatsächlich nur eine Näherung dar, die erst im Grenzfall  ${\it \Delta} \to 0$  mit der tatsächlichen Entropie  $H(Z_{X,\hspace{0.05cm}M})$  übereinstimmt.





Hinweise:


Fragebogen

1

Berechnen Sie die differentielle Entropie  $h(X)$.

$ h(X) \ = \ $

$\ \rm bit$

2

Berechnen Sie die differentielle Entropie $h(Y)$.

$ h(Y) \ = \ $

$\ \rm bit$

3

Berechnen Sie die Entropie der wertdiskreten Zufallsgrößen  $Z_{X,\hspace{0.05cm}M=4}$  nach der direkten Methode.

$H(Z_{X,\hspace{0.05cm}M=4})\ = \ $

$\ \rm bit$

4

Berechnen Sie die Entropie der wertdiskreten Zufallsgrößen  $Z_{X,\hspace{0.05cm}M=4}$  mit der angegebenen Näherung.

$H(Z_{X,\hspace{0.05cm}M=4})\ = \ $

$\ \rm bit$

5

Berechnen Sie die Entropie der wertdiskreten Zufallsgröße  $Z_{Y,\hspace{0.05cm}M=8}$  mit der angegebenen Näherung.

$H(Z_{Y,\hspace{0.05cm}M=8})\ = \ $

$\ \rm bit$

6

Welche der folgenden Aussagen sind zutreffend?

Die Entropie einer wertdiskreten Zufallsgröße  $Z$  ist stets  $H(Z) \ge 0$.
Die differenzielle Entropie einer wertkontinuierlichen Zufallsgröße  $X$  ist stets  $h(X) \ge 0$.


Musterlösung

(1)  Gemäß der entsprechenden Theorieseite gilt mit  $x_{\rm min} = 0$  und  $x_{\rm max} = 1/2$:

$$h(X) = {\rm log}_2 \hspace{0.1cm} (x_{\rm max} - x_{\rm min}) = {\rm log}_2 \hspace{0.1cm} (1/2) \hspace{0.15cm}\underline{= - 1\,{\rm bit}}\hspace{0.05cm}.$$


(2)  Mit  $y_{\rm min} = -1$  und  $y_{\rm max} = +1$  ergibt sich dagegen für die differentielle Entropie der Zufallsgröße  $Y$:

$$h(Y) = {\rm log}_2 \hspace{0.1cm} (y_{\rm max} - y_{\rm min}) = {\rm log}_2 \hspace{0.1cm} (2) \hspace{0.15cm}\underline{= + 1\,{\rm bit}}\hspace{0.05cm}. $$


Quantisierte Zufallsgröße  $Z_{X, \ M = 4}$

(3)  Die nebenstehende Grafik verdeutlicht die bestmögliche Quantisierung der Zufallsgröße  $X$  mit der Quantisierungsstufenzahl  $M = 4$    ⇒   Zufallsgröße  $Z_{X, \ M = 4}$:

  • Die Intervallbreite ist hier gleich  ${\it \Delta} = 0.5/4 = 1/8$.
  • Die möglichen Werte  (jeweils in der Intervallmitte)  sind  $z \in \{0.0625,\ 0.1875,\ 0.3125,\ 0.4375\}$.


Die direkte Entropieberechnung ergibt mit der Wahrscheinlichkeitsfunktion $P_Z(Z) = \big [1/4,\ \text{...} , \ 1/4 \big]$:

$$H(Z_{X, \ M = 4}) = {\rm log}_2 \hspace{0.1cm} (4) \hspace{0.15cm}\underline{= 2\,{\rm bit}} \hspace{0.05cm}.$$

Mit der Näherung erhält man unter Berücksichtigung des Ergebnisses von  (1):

$$H(Z_{X,\hspace{0.05cm} M = 4}) \approx -{\rm log}_2 \hspace{0.1cm} ({\it \Delta}) + h(X) = 3\,{\rm bit} +(- 1\,{\rm bit})\hspace{0.15cm}\underline{= 2\,{\rm bit}}\hspace{0.05cm}. $$

Hinweis:  Nur bei der Gleichverteilung liefert die Näherung genau das gleiche Ergebnis wie die direkte Berechnung, also die tatsächliche Entropie.

Quantisierte Zufallsgröße $Z_{Y, \ M = 4}$


(4)  Aus der zweiten Grafik erkennt man die Gemeinsamkeiten / Unterschiede zur Teilaufgabe  (3):

  • Der Quantisierungsparameter ist nun  ${\it \Delta} = 2/4 = 1/2$.
  • Die möglichen Werte sind nun  $z \in \{\pm 0.75,\ \pm 0.25\}$.
  • Somit liefert hier die „Näherung”  (ebenso wie die direkte Berechnung)  das Ergebnis:
$$H(Z_{Y,\hspace{0.05cm} M = 4}) \approx -{\rm log}_2 \hspace{0.1cm} ({\it \Delta}) + h(Y) = 1\,{\rm bit} + 1\,{\rm bit}\hspace{0.15cm}\underline{= 2\,{\rm bit}}\hspace{0.05cm}.$$


Quantisierte Zufallsgröße  $Z_{Y, \ M = 8}$

(5)  Im Gegensatz zur Teilaufgabe  (4)  gilt nun  ${\it \Delta} = 1/4$.  Daraus folgt für die „Näherung”:

$$H(Z_{Y,\hspace{0.05cm} M = 8}) \approx -{\rm log}_2 \hspace{0.1cm} ({\it \Delta}) + h(Y) = 2\,{\rm bit} + 1\,{\rm bit}\hspace{0.15cm}\underline{= 3\,{\rm bit}}\hspace{0.05cm}.$$

Man erhält wieder das gleiche Ergebnis wie bei der direkten Berechnung.


(6)  Richtig ist nur die Aussage 1:

  • Die Entropie  $H(Z)$  einer diskreten Zufallsgröße  $Z = \{z_1, \ \text{...} \ , z_M\}$  ist nie negativ.
  • Der Grenzfall  $H(Z) = 0$  ergibt sich zum Beispiel für  ${\rm Pr}(Z = z_1) = 1$  und  ${\rm Pr}(Z = z_\mu) = 0$  für  $2 \le \mu \le M$.
  • Dagegen kann die differentielle Entropie  $h(X)$  einer wertkontinuierlichen Zufallsgröße  $X$  wie folgt sein:
    • $h(X) < 0$  $($Teilaufgabe 1$)$,
    • $h(X) > 0$  $($Teilaufgabe 2$)$, oder auch
    • $h(X) = 0$  $($zum Beispiel für  $x_{\rm min} = 0$  und  $x_{\rm max} = 1)$.