Aufgaben:Aufgabe 3.1: Wahrscheinlichkeiten beim Würfeln: Unterschied zwischen den Versionen
Nabil (Diskussion | Beiträge) (Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Informationstheorie und Quellencodierung/Einige Vorbemerkungen zu zweidimensionalen Zufallsgrößen }} Datei:P_ID2749__Inf_A_3_1.pn…“) |
|||
(16 dazwischenliegende Versionen von 3 Benutzern werden nicht angezeigt) | |||
Zeile 1: | Zeile 1: | ||
− | {{quiz-Header|Buchseite=Informationstheorie | + | {{quiz-Header|Buchseite=Informationstheorie/Einige Vorbemerkungen zu zweidimensionalen Zufallsgrößen |
}} | }} | ||
− | [[Datei:P_ID2749__Inf_A_3_1.png|right|]] | + | [[Datei:P_ID2749__Inf_A_3_1.png|right|frame|Summe $S$ zweier Würfel]] |
− | Wir betrachten das Zufallsexperiment & | + | Wir betrachten das Zufallsexperiment »Würfeln mit ein oder zwei Würfeln«. Beide Würfel sind fair (die sechs möglichen Ergebnisse sind gleichwahrscheinlich) und durch ihre Farben unterscheidbar: |
+ | * Die Zufallsgröße $R = \{1, \ 2,\ 3,\ 4,\ 5,\ 6 \}$ bezeichnet die Augenzahl des roten Würfels. | ||
+ | * Die Zufallsgröße $B = \{1,\ 2,\ 3,\ 4,\ 5,\ 6 \}$ bezeichnet die Augenzahl des blauen Würfels. | ||
+ | * Die Zufallsgröße $S =R + B$ steht für die Summe beider Würfel. | ||
− | |||
− | + | In dieser Aufgabe sollen verschiedene Wahrscheinlichkeiten mit Bezug zu den Zufallsgrößen $R$, $B$ und $S$ berechnet werden, wobei das oben angegebene Schema hilfreich sein kann. Dieses beinhaltet die Summe $S$ in Abhängigkeit von $R$ und $B$. | |
− | |||
− | |||
− | + | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ''Hinweise:'' | ||
+ | *Die Aufgabe gehört zum Kapitel [[Informationstheorie/Einige_Vorbemerkungen_zu_zweidimensionalen_Zufallsgrößen|Einige Vorbemerkungen zu den 2D-Zufallsgrößen]]. | ||
+ | *Wiederholt wird hier insbesondere der Lehrstoff des Kapitels [[Stochastische_Signaltheorie/Einige_grundlegende_Definitionen|Wahrscheinlichkeitsrechnung]] im Buch „Stochastische Signaltheorie”. | ||
+ | |||
+ | |||
Zeile 22: | Zeile 32: | ||
{Geben Sie die folgenden Wahrscheinlichkeiten an: | {Geben Sie die folgenden Wahrscheinlichkeiten an: | ||
|type="{}"} | |type="{}"} | ||
− | $Pr(R = 6)$ | + | $\text{Pr}(R = 6)\ = \ $ { 0.1667 3% } |
− | $Pr(B ≤ 2)$ | + | $\text{Pr}(B ≤ 2)\ = \ $ { 0.3333 3% } |
− | $Pr(R = B)$ | + | $\text{Pr}(R = B)\ = \ $ { 0.1667 3% } |
{Wie lauten die folgenden Wahrscheinlichkeiten? | {Wie lauten die folgenden Wahrscheinlichkeiten? | ||
|type="{}"} | |type="{}"} | ||
− | $Pr(S = | + | $\text{Pr}(S = 3)\ = \ $ { 0.0556 3% } |
− | $Pr(S = 7)$ | + | $\text{Pr}(S = 7)\ = \ $ { 0.1667 3% } |
− | Pr( | + | $\text{Pr(ungeradzahlige Summe)}\ = \ $ { 0.5 3% } |
{Geben Sie die folgenden Wahrscheinlichkeiten an: | {Geben Sie die folgenden Wahrscheinlichkeiten an: | ||
|type="{}"} | |type="{}"} | ||
− | $Pr[(R = 6)\ \cup \ (B =6)]$ | + | $\text{Pr}\big [(R = 6)\ \cup \ (B =6)\big]\ = \ $ { 0.3056 3% } |
− | $Pr[(R = 6)\ \cap \ (B =6)]$ | + | $\text{Pr}\big[(R = 6)\ \cap \ (B =6)\big]\ = \ $ { 0.0278 3% } |
− | {Wie groß ist die Wahrscheinlichkeit, dass beim | + | {Wie groß ist die Wahrscheinlichkeit, dass beim $L$–ten Doppelwurf zum ersten Mal eine „6” dabei ist? |
|type="{}"} | |type="{}"} | ||
− | Pr(erste „6” | + | $L = 1\text{:}\hspace{0.5cm}\text{Pr(erste „6”)} \ = \ $ { 0.3056 3% } |
− | Pr(erste „6” | + | $L = 2\text{:}\hspace{0.5cm}\text{Pr(erste „6”)} \ = \ $ { 0.2122 3% } |
− | Pr(erste „6” | + | $L = 3\text{:}\hspace{0.5cm}\text{Pr(erste „6”)} \ = \ $ { 0.1474 3% } |
− | {Wie groß ist die Wahrscheinlichkeit & | + | {Wie groß ist die Wahrscheinlichkeit »Man benötigt eine geradzahlige Anzahl an Doppelwürfen, um die erste „6” zu erhalten« ? <br>Mit der Nomenklatur gemäß Teilaufgabe '''(4)''': |
|type="{}"} | |type="{}"} | ||
− | Pr(L ist | + | $\text{Pr(}L\text{ ist gerade | erste „6”)}\ = \ $ { 0.4098 3% } |
</quiz> | </quiz> | ||
Zeile 55: | Zeile 65: | ||
===Musterlösung=== | ===Musterlösung=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | + | '''(1)''' Setzt man faire Würfel voraus, so ergibt sich für die Wahrscheinlichkeit, dass | |
− | + | * mit dem roten Würfel eine „6” geworfen wird: | |
− | |||
:$$\underline{{\rm Pr}(R=6) = 1/6} = 0.1667 \hspace{0.05cm},$$ | :$$\underline{{\rm Pr}(R=6) = 1/6} = 0.1667 \hspace{0.05cm},$$ | ||
− | + | * mit dem blauen Würfel eine „1” oder eine „2” geworfen wird: | |
:$$\underline{{\rm Pr}(B\le 2) = 1/3} = 0.3333 \hspace{0.05cm},$$ | :$$\underline{{\rm Pr}(B\le 2) = 1/3} = 0.3333 \hspace{0.05cm},$$ | ||
− | + | * beide Würfel die gleiche Augenzahl anzeigen: | |
:$$\underline{{\rm Pr}(R=B) = 6/36} = 0.1667 \hspace{0.05cm}.$$ | :$$\underline{{\rm Pr}(R=B) = 6/36} = 0.1667 \hspace{0.05cm}.$$ | ||
− | Letzteres basiert auf der 2D–Darstellung auf dem | + | Letzteres basiert auf der 2D–Darstellung auf dem Angabenblatt sowie auf der „Klassischen Definition der Wahrscheinlichkeit” entsprechend $K/M$: |
+ | *$K = 6$ der insgesamt $M = 36$ gleichwahrscheinlichen Elementarereignisse $R \cap B$ können dem hieraus abgeleiteten Ereignis $R=B$ zugeordnet werden. | ||
+ | *Diese liegen auf der Diagonalen. Würfelspieler sprechen in diesem Fall von einem „Pasch”. | ||
− | |||
− | |||
− | :* In | + | '''(2)''' Die Lösung basiert wieder auf der Klassischen Definition der Wahrscheinlichkeit: |
+ | * In $K = 2$ der $M = 36$ Elementarfelder steht eine „3” ⇒ ${\rm Pr}(S = 3) = 2/36\hspace{0.15cm}\underline{ = 0.0556}.$ | ||
+ | * In $K = 6$ der $M = 36$ Elementarfelder steht eine „7” ⇒ ${\rm Pr}(S = 7) = 6/36\hspace{0.15cm}\underline{ = 0.1667}.$ | ||
+ | * In $K = 18$ der $M = 36$ Felder steht eine ungerade Zahl ⇒ ${\rm Pr}(S\text{ ist ungerade}) = 18/36\hspace{0.15cm}\underline{ = 0.5}.$ | ||
− | |||
− | Dieses letzte Ergebnis könnte man auch auf anderem Wege erhalten: | + | *Dieses letzte Ergebnis könnte man auch auf anderem Wege erhalten: |
− | :$${\rm Pr}(S\hspace{0.15cm}{\rm ist \hspace{0.15cm} ungerade}) = | + | :$${\rm Pr}(S\hspace{0.15cm}{\rm ist \hspace{0.15cm} ungerade}) = |
− | + | {\rm Pr}\big [(R\hspace{0.12cm}{\rm ist\hspace{0.12cm} ungerade}) \cap | |
(B\hspace{0.12cm}{\rm ist\hspace{0.12cm} gerade}) \big ] + | (B\hspace{0.12cm}{\rm ist\hspace{0.12cm} gerade}) \big ] + | ||
{\rm Pr}\big [(R\hspace{0.12cm}{\rm ist\hspace{0.12cm} gerade}) \cap | {\rm Pr}\big [(R\hspace{0.12cm}{\rm ist\hspace{0.12cm} gerade}) \cap | ||
(B\hspace{0.12cm}{\rm ist\hspace{0.12cm} ungerade})\big ]\hspace{0.05cm}. $$ | (B\hspace{0.12cm}{\rm ist\hspace{0.12cm} ungerade})\big ]\hspace{0.05cm}. $$ | ||
− | Mit Pr( | + | *Mit ${\rm Pr}(R\hspace{0.12cm}{\rm ist\hspace{0.12cm} gerade}) = {\rm Pr} (R\hspace{0.12cm}{\rm ist\hspace{0.12cm} ungerade}) = {\rm Pr}(B\hspace{0.12cm}{\rm ist\hspace{0.12cm} gerade})= {\rm Pr}(B\hspace{0.12cm}{\rm ist\hspace{0.12cm} ungerade}) = 1/2$ folgt daraus ebenfalls: |
:$${\rm Pr}(S\hspace{0.15cm}{\rm ist \hspace{0.15cm} ungerade}) = 1/2 \cdot 1/2 + 1/2 \cdot 1/2 = 1/2 \hspace{0.05cm}.$$ | :$${\rm Pr}(S\hspace{0.15cm}{\rm ist \hspace{0.15cm} ungerade}) = 1/2 \cdot 1/2 + 1/2 \cdot 1/2 = 1/2 \hspace{0.05cm}.$$ | ||
− | + | ||
+ | |||
+ | '''(3)''' Die Wahrscheinlichkeit für das Ereignis, dass mindestens einer der beiden Würfel eine „6” zeigt, ist: | ||
:$${\rm Pr}\big [(R= 6) \cup (B= 6) \big ] = K/M = 11/36 \hspace{0.15cm} \underline{= 0.3056} | :$${\rm Pr}\big [(R= 6) \cup (B= 6) \big ] = K/M = 11/36 \hspace{0.15cm} \underline{= 0.3056} | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | Die zweite Wahrscheinlichkeit steht für den „Sechser–Pasch”: | + | *Die zweite Wahrscheinlichkeit steht allein für den „Sechser–Pasch”: |
:$${\rm Pr}\big [(R= 6) \cap (B= 6) \big ] = K/M = 1/36 \hspace{0.15cm} \underline{= 0.0278} | :$${\rm Pr}\big [(R= 6) \cap (B= 6) \big ] = K/M = 1/36 \hspace{0.15cm} \underline{= 0.0278} | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | + | ||
+ | |||
+ | '''(4)''' Das Ergebnis für $L = 1$ wurde bereits in der Teilaufgabe '''(3)''' ermittelt: | ||
:$$p_1 = {\rm Pr}\big [(R= 6) \cup (B= 6) \big ] = {11}/{36} \hspace{0.15cm} \underline{= 0.3056} \hspace{0.05cm}.$$ | :$$p_1 = {\rm Pr}\big [(R= 6) \cup (B= 6) \big ] = {11}/{36} \hspace{0.15cm} \underline{= 0.3056} \hspace{0.05cm}.$$ | ||
− | Die Wahrscheinlichkeit | + | *Die Wahrscheinlichkeit $p_2$ lässt sich mit $p_1$ wie folgt ausdrücken: |
:$$p_2 = (1 - p_1) \cdot p_1 = \frac{25}{36} \cdot \frac{11}{36} \hspace{0.15cm} \underline{= 0.2122} \hspace{0.05cm}. $$ | :$$p_2 = (1 - p_1) \cdot p_1 = \frac{25}{36} \cdot \frac{11}{36} \hspace{0.15cm} \underline{= 0.2122} \hspace{0.05cm}. $$ | ||
− | In | + | :In Worten: Die Wahrscheinlichkeit, dass im zweiten Wurf erstmals eine „6” geworfen wird, ist gleich der Wahrscheinlichkeit, dass im ersten Wurf keine „6” geworfen wurde ⇒ Wahrscheinlichkeit $1-p_1$, aber im zweiten Wurf mindestens eine „6” dabei ist ⇒ Wahrscheinlichkeit $p_1$. |
+ | |||
+ | *Entsprechend gilt für die Wahrscheinlichkeit „erste 6 im dritten Wurf”: | ||
:$$p_3 = (1 - p_1)^2 \cdot p_1 = \frac{25}{36} \cdot \frac{25}{36} \cdot\frac{11}{36} \hspace{0.15cm} \underline{= 0.1474} \hspace{0.05cm}.$$ | :$$p_3 = (1 - p_1)^2 \cdot p_1 = \frac{25}{36} \cdot \frac{25}{36} \cdot\frac{11}{36} \hspace{0.15cm} \underline{= 0.1474} \hspace{0.05cm}.$$ | ||
− | + | ||
− | :$${ | + | |
− | \hspace{0. | + | '''(5)''' Durch Erweiterung der Musterlösung zur Teilaufgabe '''(4)''' erhält man: |
− | + | :$$\text{Pr(gerades }L\ | \text{ erste „6”})= p_2 \hspace{-0.05cm}+ \hspace{-0.05cm}p_4 \hspace{-0.05cm}+ \hspace{-0.05cm} p_6 \hspace{-0.05cm}+ \hspace{-0.05cm} \text{...} = | |
− | = \ | + | (1 \hspace{-0.05cm}- \hspace{-0.05cm} p_1) \cdot p_1 \hspace{-0.05cm}+ \hspace{-0.05cm} (1 \hspace{-0.05cm}- \hspace{-0.05cm} p_1)^3 \cdot p_1 \hspace{-0.05cm}+ \hspace{-0.05cm}(1 \hspace{-0.05cm}- \hspace{-0.05cm} p_1)^5 \cdot p_1 \hspace{-0.05cm}+ \hspace{-0.05cm} \text{...} |
− | + | = (1 \hspace{-0.05cm}- \hspace{-0.05cm} p_1) \cdot p_1 \cdot \left [ 1 \hspace{-0.05cm}+ \hspace{-0.05cm} (1 \hspace{-0.05cm}- \hspace{-0.05cm} p_1)^2 \hspace{-0.05cm}+ \hspace{-0.05cm} (1 \hspace{-0.05cm}- \hspace{-0.05cm} p_1)^4 +\text{...}\hspace{0.05cm} \right ] | |
\hspace{0.05cm}. $$ | \hspace{0.05cm}. $$ | ||
− | Entsprechend erhält man für die Wahrscheinlichkeit des Komplementärereignisses: | + | *Entsprechend erhält man für die Wahrscheinlichkeit des Komplementärereignisses: |
− | :$${\rm Pr}(L\hspace{0.15cm}{\rm ist\hspace{0.15cm} | + | :$${\rm Pr}(L\hspace{0.15cm}{\rm ist\hspace{0.15cm} ungerade \ | \text{ erste „6”}}) |
− | + | = p_1 + p_3 + p_5 + \text{...} = p_1 \cdot \left [ 1 + (1 - p_1)^2 + (1 - p_1)^4 + \text{...} \hspace{0.15cm} \right ] | |
− | + | \hspace{0.05cm}\hspace{0.3cm} | |
− | \hspace{0.05cm} | + | \Rightarrow \hspace{0.3cm} \frac{{\rm Pr}(L\hspace{0.15cm}{\rm ist\hspace{0.15cm} ungerade \ | \text{ erste „6”}}) } {{\rm Pr}(L\hspace{0.15cm}{\rm ist\hspace{0.15cm} gerade} \ | \text{ erste „6”})} = \frac{1}{1 - p_1} \hspace{0.05cm}. $$ |
− | + | *Weiter muss gelten: | |
− | Weiter muss gelten: | + | :$${\rm Pr}(L\hspace{0.15cm}{\rm ist\hspace{0.15cm} gerade \ | \text{ erste „6”}}) + |
− | :$${\rm Pr}(L\hspace{0.15cm}{\rm ist\hspace{0.15cm} | + | {\rm Pr}(L\hspace{0.15cm}{\rm ist\hspace{0.15cm} ungerade \ | \text{ erste „6”}}) = 1$$ |
− | {\rm Pr}(L\hspace{0.15cm}{\rm ist\hspace{0.15cm} | + | :$$\Rightarrow \hspace{0.3cm} {\rm Pr}(L\hspace{0.15cm}{\rm ist\hspace{0.15cm} gerade \ | \text{ erste „6”}}) \cdot \left [ 1 + \frac{1}{1 - p_1} \right ] = 1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm Pr}(L\hspace{0.15cm}{\rm ist\hspace{0.15cm} gerade \ | \text{ erste „6”}}) = \frac{1 - p_1}{2 - p_1} = \frac{25/36}{61/36} = \frac{25}{61} \hspace{0.15cm} \underline{= 0.4098} \hspace{0.05cm}.$$ |
− | :$$\Rightarrow \hspace{0.3cm} {\rm Pr}(L\hspace{0.15cm}{\rm ist\hspace{0.15cm} | ||
− | |||
{{ML-Fuß}} | {{ML-Fuß}} | ||
− | [[Category:Aufgaben zu Informationstheorie | + | [[Category:Aufgaben zu Informationstheorie|^3.1 Allgemeines zu 2D-Zufallsgrößen^]] |
Aktuelle Version vom 16. August 2021, 14:50 Uhr
Wir betrachten das Zufallsexperiment »Würfeln mit ein oder zwei Würfeln«. Beide Würfel sind fair (die sechs möglichen Ergebnisse sind gleichwahrscheinlich) und durch ihre Farben unterscheidbar:
- Die Zufallsgröße $R = \{1, \ 2,\ 3,\ 4,\ 5,\ 6 \}$ bezeichnet die Augenzahl des roten Würfels.
- Die Zufallsgröße $B = \{1,\ 2,\ 3,\ 4,\ 5,\ 6 \}$ bezeichnet die Augenzahl des blauen Würfels.
- Die Zufallsgröße $S =R + B$ steht für die Summe beider Würfel.
In dieser Aufgabe sollen verschiedene Wahrscheinlichkeiten mit Bezug zu den Zufallsgrößen $R$, $B$ und $S$ berechnet werden, wobei das oben angegebene Schema hilfreich sein kann. Dieses beinhaltet die Summe $S$ in Abhängigkeit von $R$ und $B$.
Hinweise:
- Die Aufgabe gehört zum Kapitel Einige Vorbemerkungen zu den 2D-Zufallsgrößen.
- Wiederholt wird hier insbesondere der Lehrstoff des Kapitels Wahrscheinlichkeitsrechnung im Buch „Stochastische Signaltheorie”.
Fragebogen
Musterlösung
- mit dem roten Würfel eine „6” geworfen wird:
- $$\underline{{\rm Pr}(R=6) = 1/6} = 0.1667 \hspace{0.05cm},$$
- mit dem blauen Würfel eine „1” oder eine „2” geworfen wird:
- $$\underline{{\rm Pr}(B\le 2) = 1/3} = 0.3333 \hspace{0.05cm},$$
- beide Würfel die gleiche Augenzahl anzeigen:
- $$\underline{{\rm Pr}(R=B) = 6/36} = 0.1667 \hspace{0.05cm}.$$
Letzteres basiert auf der 2D–Darstellung auf dem Angabenblatt sowie auf der „Klassischen Definition der Wahrscheinlichkeit” entsprechend $K/M$:
- $K = 6$ der insgesamt $M = 36$ gleichwahrscheinlichen Elementarereignisse $R \cap B$ können dem hieraus abgeleiteten Ereignis $R=B$ zugeordnet werden.
- Diese liegen auf der Diagonalen. Würfelspieler sprechen in diesem Fall von einem „Pasch”.
(2) Die Lösung basiert wieder auf der Klassischen Definition der Wahrscheinlichkeit:
- In $K = 2$ der $M = 36$ Elementarfelder steht eine „3” ⇒ ${\rm Pr}(S = 3) = 2/36\hspace{0.15cm}\underline{ = 0.0556}.$
- In $K = 6$ der $M = 36$ Elementarfelder steht eine „7” ⇒ ${\rm Pr}(S = 7) = 6/36\hspace{0.15cm}\underline{ = 0.1667}.$
- In $K = 18$ der $M = 36$ Felder steht eine ungerade Zahl ⇒ ${\rm Pr}(S\text{ ist ungerade}) = 18/36\hspace{0.15cm}\underline{ = 0.5}.$
- Dieses letzte Ergebnis könnte man auch auf anderem Wege erhalten:
- $${\rm Pr}(S\hspace{0.15cm}{\rm ist \hspace{0.15cm} ungerade}) = {\rm Pr}\big [(R\hspace{0.12cm}{\rm ist\hspace{0.12cm} ungerade}) \cap (B\hspace{0.12cm}{\rm ist\hspace{0.12cm} gerade}) \big ] + {\rm Pr}\big [(R\hspace{0.12cm}{\rm ist\hspace{0.12cm} gerade}) \cap (B\hspace{0.12cm}{\rm ist\hspace{0.12cm} ungerade})\big ]\hspace{0.05cm}. $$
- Mit ${\rm Pr}(R\hspace{0.12cm}{\rm ist\hspace{0.12cm} gerade}) = {\rm Pr} (R\hspace{0.12cm}{\rm ist\hspace{0.12cm} ungerade}) = {\rm Pr}(B\hspace{0.12cm}{\rm ist\hspace{0.12cm} gerade})= {\rm Pr}(B\hspace{0.12cm}{\rm ist\hspace{0.12cm} ungerade}) = 1/2$ folgt daraus ebenfalls:
- $${\rm Pr}(S\hspace{0.15cm}{\rm ist \hspace{0.15cm} ungerade}) = 1/2 \cdot 1/2 + 1/2 \cdot 1/2 = 1/2 \hspace{0.05cm}.$$
(3) Die Wahrscheinlichkeit für das Ereignis, dass mindestens einer der beiden Würfel eine „6” zeigt, ist:
- $${\rm Pr}\big [(R= 6) \cup (B= 6) \big ] = K/M = 11/36 \hspace{0.15cm} \underline{= 0.3056} \hspace{0.05cm}.$$
- Die zweite Wahrscheinlichkeit steht allein für den „Sechser–Pasch”:
- $${\rm Pr}\big [(R= 6) \cap (B= 6) \big ] = K/M = 1/36 \hspace{0.15cm} \underline{= 0.0278} \hspace{0.05cm}.$$
(4) Das Ergebnis für $L = 1$ wurde bereits in der Teilaufgabe (3) ermittelt:
- $$p_1 = {\rm Pr}\big [(R= 6) \cup (B= 6) \big ] = {11}/{36} \hspace{0.15cm} \underline{= 0.3056} \hspace{0.05cm}.$$
- Die Wahrscheinlichkeit $p_2$ lässt sich mit $p_1$ wie folgt ausdrücken:
- $$p_2 = (1 - p_1) \cdot p_1 = \frac{25}{36} \cdot \frac{11}{36} \hspace{0.15cm} \underline{= 0.2122} \hspace{0.05cm}. $$
- In Worten: Die Wahrscheinlichkeit, dass im zweiten Wurf erstmals eine „6” geworfen wird, ist gleich der Wahrscheinlichkeit, dass im ersten Wurf keine „6” geworfen wurde ⇒ Wahrscheinlichkeit $1-p_1$, aber im zweiten Wurf mindestens eine „6” dabei ist ⇒ Wahrscheinlichkeit $p_1$.
- Entsprechend gilt für die Wahrscheinlichkeit „erste 6 im dritten Wurf”:
- $$p_3 = (1 - p_1)^2 \cdot p_1 = \frac{25}{36} \cdot \frac{25}{36} \cdot\frac{11}{36} \hspace{0.15cm} \underline{= 0.1474} \hspace{0.05cm}.$$
(5) Durch Erweiterung der Musterlösung zur Teilaufgabe (4) erhält man:
- $$\text{Pr(gerades }L\ | \text{ erste „6”})= p_2 \hspace{-0.05cm}+ \hspace{-0.05cm}p_4 \hspace{-0.05cm}+ \hspace{-0.05cm} p_6 \hspace{-0.05cm}+ \hspace{-0.05cm} \text{...} = (1 \hspace{-0.05cm}- \hspace{-0.05cm} p_1) \cdot p_1 \hspace{-0.05cm}+ \hspace{-0.05cm} (1 \hspace{-0.05cm}- \hspace{-0.05cm} p_1)^3 \cdot p_1 \hspace{-0.05cm}+ \hspace{-0.05cm}(1 \hspace{-0.05cm}- \hspace{-0.05cm} p_1)^5 \cdot p_1 \hspace{-0.05cm}+ \hspace{-0.05cm} \text{...} = (1 \hspace{-0.05cm}- \hspace{-0.05cm} p_1) \cdot p_1 \cdot \left [ 1 \hspace{-0.05cm}+ \hspace{-0.05cm} (1 \hspace{-0.05cm}- \hspace{-0.05cm} p_1)^2 \hspace{-0.05cm}+ \hspace{-0.05cm} (1 \hspace{-0.05cm}- \hspace{-0.05cm} p_1)^4 +\text{...}\hspace{0.05cm} \right ] \hspace{0.05cm}. $$
- Entsprechend erhält man für die Wahrscheinlichkeit des Komplementärereignisses:
- $${\rm Pr}(L\hspace{0.15cm}{\rm ist\hspace{0.15cm} ungerade \ | \text{ erste „6”}}) = p_1 + p_3 + p_5 + \text{...} = p_1 \cdot \left [ 1 + (1 - p_1)^2 + (1 - p_1)^4 + \text{...} \hspace{0.15cm} \right ] \hspace{0.05cm}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} \frac{{\rm Pr}(L\hspace{0.15cm}{\rm ist\hspace{0.15cm} ungerade \ | \text{ erste „6”}}) } {{\rm Pr}(L\hspace{0.15cm}{\rm ist\hspace{0.15cm} gerade} \ | \text{ erste „6”})} = \frac{1}{1 - p_1} \hspace{0.05cm}. $$
- Weiter muss gelten:
- $${\rm Pr}(L\hspace{0.15cm}{\rm ist\hspace{0.15cm} gerade \ | \text{ erste „6”}}) + {\rm Pr}(L\hspace{0.15cm}{\rm ist\hspace{0.15cm} ungerade \ | \text{ erste „6”}}) = 1$$
- $$\Rightarrow \hspace{0.3cm} {\rm Pr}(L\hspace{0.15cm}{\rm ist\hspace{0.15cm} gerade \ | \text{ erste „6”}}) \cdot \left [ 1 + \frac{1}{1 - p_1} \right ] = 1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm Pr}(L\hspace{0.15cm}{\rm ist\hspace{0.15cm} gerade \ | \text{ erste „6”}}) = \frac{1 - p_1}{2 - p_1} = \frac{25/36}{61/36} = \frac{25}{61} \hspace{0.15cm} \underline{= 0.4098} \hspace{0.05cm}.$$