Aufgaben:Aufgabe 3.1Z: Karten ziehen: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(24 dazwischenliegende Versionen von 4 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
  
{{quiz-Header|Buchseite=Informationstheorie und Quellencodierung/Einige Vorbemerkungen zu zweidimensionalen Zufallsgrößen
+
{{quiz-Header|Buchseite=Informationstheorie/Einige Vorbemerkungen zu zweidimensionalen Zufallsgrößen
 
}}
 
}}
  
[[Datei:P_ID77__Sto_A_1_5.gif|right|]]
+
[[Datei:P_ID77__Sto_A_1_5.gif|right|frame|Das gewünschte Ergebnis <br>&bdquo;Drei Asse werden gezogen&rdquo;]]
Aus einem Kartenspiel mit 32 Karten, darunter 4 Asse, werden nacheinander 3 Karten herausgezogen. Für Frage (a) wird vorausgesetzt, dass nach dem Ziehen einer Karte diese in den Stapel zurückgelegt wird, dieser neu gemischt wird und anschließend die nächste Karte gezogen wird.
+
Aus einem Kartenspiel mit&nbsp; $32$&nbsp; Karten, darunter vier Asse, werden nacheinander drei Karten herausgezogen.&nbsp; Für Frage&nbsp; '''(1)'''&nbsp; wird vorausgesetzt, dass nach dem Ziehen einer Karte  
 +
*diese in den Stapel zurückgelegt wird,  
 +
*dieser neu gemischt wird und  
 +
*anschließend die nächste Karte gezogen wird.
  
Dagegen sollen Sie für die weiteren Teilfragen ab (b) davon ausgehen, dass die drei Karten auf einmal gezogen werden („Ziehen ohne Zurücklegen“).
 
  
Im Folgenden bezeichnen wir mit $A_i$das Ereignis, dass die zum Zeitpunkt '''''i''''' gezogene Karte ein Ass ist. Hierbei ist '''''i '''''= 1, 2, 3 zu setzen. Das Komplementärereignis sagt dann aus, dass zum Zeitpunkt ''i'' irgend eine andere Karte gezogen wird.
+
Dagegen sollen Sie für die weiteren Teilfragen ab&nbsp; '''(2)'''&nbsp; davon ausgehen, dass die drei Karten auf einmal gezogen werden&nbsp; („Ziehen ohne Zurücklegen“).
  
<b>Hinweis:</b> Die Aufgabe behandelt den Lehrstoff von Kapitel 1.3 im Buch „Stochastische Signaltheorie”. Sie wird hier zur Vorbereitung auf die ähnliche Thematik von Kapitel 3.1 des Buches „Einführung in die Informationstheorie” wiederholt.
+
*Im Folgenden bezeichnen wir mit&nbsp; $A_i$&nbsp; das Ereignis, dass die zum Zeitpunkt&nbsp; $i$&nbsp; gezogene Karte ein Ass ist.&nbsp; <br>Hierbei ist&nbsp; $i = 1,\ 2,\ 3$&nbsp; zu setzen.
 +
*Das Komplementärereignis&nbsp; $\overline{\it A_i}$&nbsp; sagt aus, dass zum Zeitpunkt&nbsp; $i$&nbsp; kein Ass gezogen wird, sondern irgendeine andere Karte.
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
''Hinweise:''
 +
*Die Aufgabe gehört zum  Kapitel&nbsp; [[Informationstheorie/Einige_Vorbemerkungen_zu_zweidimensionalen_Zufallsgrößen|Einige Vorbemerkungen zu den 2D-Zufallsgrößen]].
 +
*Wiederholt wird hier insbesondere der Lehrstoff des Kapitels&nbsp;  [[Stochastische_Signaltheorie/Statistische_Abhängigkeit_und_Unabhängigkeit|Statistische Abhängigkeit und Unabhängigkeit]] im Buch &bdquo;Stochastische Signaltheorie&rdquo;.
 +
*Eine Zusammenfassung der theoretischen Grundlagen mit Beispielen bringt das Lernvideo &nbsp;[[Statistische_Abhängigkeit_und_Unabhängigkeit_(Lernvideo)|Statistische Abhängigkeit und Unabhängigkeit]].  
 +
  
Eine Zusammenfassung der theoretischen Grundlagen mit Beispielen bringt folgendes Lernvideo :[http://{{SERVERNAME}}/mediawiki/swf_files/Buch4/InformationundQuellencodierung0.swf Statistische (Un-)Abhängigkeit (3-teilig: Dauer Teil 1: 4:20 – Teil 2: 3:40 – Teil 3: 3:40)]
 
  
  
Zeile 21: Zeile 38:
  
  
Betrachten Sie zunächst den Fall „Ziehen mit Zurücklegen“. Wie groß ist die Wahrscheinlichkeit $p_a$ ,  dass drei Asse gezogen werden?
+
Betrachten Sie zunächst den Fall „Ziehen mit Zurücklegen“.&nbsp; Wie groß ist die Wahrscheinlichkeit&nbsp; $p_1$,  dass drei Asse gezogen werden?
 
|type="{}"}
 
|type="{}"}
  $p_a$ = { 0.002 3%  }
+
  $p_1 \ = \ $  { 0.002 3%  }
  
{Mit welcher Wahrscheinlichkeit $p_b$ werden drei Asse gezogen, wenn man die Karten nicht zurücklegt? Warum ist $p_b$ kleiner/gleich/größer als $p_a$?
+
{Mit welcher Wahrscheinlichkeit&nbsp; $p_2$&nbsp; werden drei Asse gezogen, wenn man die Karten nicht zurücklegt?&nbsp; Warum ist&nbsp; $p_2$&nbsp; kleiner/gleich/größer als&nbsp; $p_1$?
 
|type="{}"}
 
|type="{}"}
$p_b$= { 0.0008 3% }
+
$p_2 \ = \ $ { 0.0008 3% }
  
{Betrachten Sie weiterhin den Fall „Ziehen ohne Zurücklegen“. Wie  groß ist die Wahrscheinlichkeit $p_c$ , dass kein einziges Ass gezogen  wird?
+
{Betrachten Sie weiterhin den Fall „Ziehen ohne Zurücklegen“.&nbsp; Wie  groß ist die Wahrscheinlichkeit&nbsp; $p_3$ , dass kein einziges Ass gezogen  wird?
 
|type="{}"}
 
|type="{}"}
$p_c$ ={ 0.6605 3% }
+
$p_3 \ = \ $ { 0.6605 3% }
  
{Wie groß ist die Wahrscheinlichkeit $p_d$, dass genau ein Ass gezogen wird?
+
{Wie groß ist die Wahrscheinlichkeit&nbsp; $p_4$, dass im Fall „Ziehen ohne Zurücklegen“ genau ein Ass gezogen wird?
 
|type="{}"}
 
|type="{}"}
$p_d$ = { 0.3048 3% }  
+
$p_4 \ = \ $ { 0.3048 3% }  
  
{Wie groß ist die Wahrscheinlichkeit, dass zwei der drei gezogenen Karten Asse sind? Hinweis: Die Ereignisse „genau '''''i''''' Asse werden gezogen” mit  '''''i''''' = 0, 1, 2, 3 beschreiben ein vollständiges System.
+
{Wie groß ist die Wahrscheinlichkeit, dass zwei der drei gezogenen Karten Asse sind? <br>Hinweis: &nbsp; Die Ereignisse „genau&nbsp; $i$&nbsp; Asse werden gezogen” mit&nbsp; $i = 0,\ 1,\ 2,\ 3$&nbsp; beschreiben ein so genanntes&nbsp; &bdquo;vollständiges System&rdquo;.
 
|type="{}"}
 
|type="{}"}
$p_e$ = { 0.0339 3% }
+
$p_5 \ = \ $ { 0.0339 3% }
 
</quiz>
 
</quiz>
  
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.''' Werden die Karten nach dem Ziehen zurückgelegt, so ist zu jedem Zeitpunkt die Wahrscheinlichkeit für ein Ass gleich groß (1/8):
+
'''(1)'''&nbsp; Werden die Karten nach dem Ziehen zurückgelegt, so ist zu jedem Zeitpunkt die Wahrscheinlichkeit für ein Ass gleich groß&nbsp; $(1/8)$:
 
 
$$ p_{\rm a} = \rm Pr (3 \hspace{0.1cm} Asse) = \rm Pr (\it A_{\rm 1})\cdot \rm Pr (\it A_{\rm 2})\cdot \rm Pr (\it A_{\rm 3}) = \rm \big({1}/{8}\big)^3 \hspace{0.15cm}\underline{\approx 0.002}.$$
 
 
    
 
    
 +
:$$ p_{\rm 1} = \rm Pr (3 \hspace{0.1cm} Asse) = \rm Pr (\it A_{\rm 1} \rm )\cdot \rm Pr (\it A_{\rm 2} \rm )\cdot \rm Pr (\it A_{\rm 3} \rm ) = \rm \big({1}/{8}\big)^3 \hspace{0.15cm}\underline{\approx 0.002}.$$
 +
 +
 +
 +
'''(2)'''&nbsp; Nun erhält man mit dem allgemeinen Multiplikationstheorem:
 +
 +
:$$ p_{\rm 2} = \rm Pr (\it A_{\rm 1}\cap \it A_{\rm 2} \cap \it A_{\rm 3} \rm ) = \rm Pr (\it A_{\rm 1}\rm ) \cdot \rm Pr (\it A_{\rm 2} |\it A_{\rm 1}\rm ) \cdot \rm Pr (\it A_{\rm 3} |( \it A_{\rm 1}\cap \it A_{\rm 2} \rm )).$$
 +
*Die bedingten Wahrscheinlichkeiten k&ouml;nnen nach der klassischen Definition berechnet werden.
 +
*Man erhält somit das Ergebnis&nbsp; $k/m$&nbsp; $($bei&nbsp; $m$&nbsp; Karten sind noch&nbsp; $k$&nbsp; Asse enthalten$)$:
 +
:$$p_{\rm 2} =\rm \frac{4}{32}\cdot \frac{3}{31}\cdot\frac{2}{30}\hspace{0.15cm}\underline{ \approx 0.0008}.$$
 +
 +
*$p_2$&nbsp; ist kleiner als&nbsp; $p_1$, da nun das zweite und dritte Ass unwahrscheinlicher sind als zuvor.
 +
 +
 +
 +
'''(3)'''&nbsp; Analog zur Teilaufgabe&nbsp; '''(2)'''&nbsp; erhält man hier:
 +
 +
:$$p_{\rm 3} = \rm Pr (\overline{\it A_{\rm 1}})\cdot \rm Pr (\overline{\it A_{\rm 2}} \hspace{0.05cm}|\hspace{0.05cm}\overline{\it A_{\rm 1}})\cdot \rm Pr (\overline{\it A_{\rm3}}\hspace{0.05cm}|\hspace{0.05cm}(\overline{\it A_{\rm 1}} \cap \overline{\it A_{\rm 2}} )) =\rm \frac{28}{32}\cdot\frac{27}{31}\cdot\frac{26}{30}\hspace{0.15cm}\underline{\approx 0.6605}.$$
 +
  
'''2.''' Nun erhält man mit dem allgemeinen Multiplikationstheorem:
 
  
$$ p_{\rm b} = \rm Pr (\it A_{\rm 1}\cap \it A_{\rm 2} \cap \it A_{\rm 3} ) = \rm Pr (\it A_{\rm 1}) \cdot \rm Pr (\it A_{\rm 2} |\it A_{\rm 1} ) \cdot \rm Pr (\it A_{\rm 3} |( \it A_{\rm 1}\cap \it A_{\rm 2} )).$$
+
'''(4)'''&nbsp; Diese Wahrscheinlichkeit kann man als die Summe dreier Wahrscheinlichkeiten ausdrücken. &nbsp; &rArr; &nbsp; $p_{\rm 4} = \rm Pr (\it D_{\rm 1} \cup \it D_{\rm 2} \cup \it D_{\rm 3}) $.
Die bedingten Wahrscheinlichkeiten k&ouml;nnen nach der klassischen Definition berechnet werden. Man erhält somit das Ergebnis &bdquo;<i>k</i>/<i>m</i>&rdquo; (bei <i>m</i> Karten sind noch <i>k</i> Asse enthalten).
+
* Die zugehörigen Ereignisse&nbsp; ${\rm Pr}(D_1)$,&nbsp;  ${\rm Pr}(D_2)$&nbsp; und&nbsp; ${\rm Pr}(D_3)$&nbsp; sind disjunkt:
$$p_{\rm b} =\rm \frac{4}{32}\cdot \frac{3}{31}\cdot\frac{2}{30}\hspace{0.15cm}\underline{ \approx 0.0008}.$$
 
<i>p</i><sub>b</sub> ist kleiner als <i>p</i><sub>a</sub>, da nun das zweite und dritte Ass unwahrscheinlicher sind als zuvor.
 
  
'''3.'''Analog zu Punkt (b) erhält man hier:
+
:$${\rm Pr} (D_1) = {\rm Pr} (A_1 \cap \overline{ \it A_{\rm 2}} \cap \overline{\it A_{\rm 3}}) = \rm \frac{4}{32}\cdot \frac{28}{31}\cdot \frac{27}{30}=\rm 0.1016,$$
 +
:$${\rm Pr} (D_2) =  {\rm Pr} ( \overline{A_1} \cap A_2 \cap \overline{A_3}) = \rm \frac{28}{32}\cdot \frac{4}{31}\cdot\frac{27}{30}=\rm 0.1016,$$
 +
:$${\rm Pr} (D_3) =  {\rm Pr} ( \overline{A_1} \cap  \overline{A_2} \cap A_3) = \rm \frac{28}{32}\cdot \frac{27}{31}\cdot \frac{4}{30}=\rm 0.1016.$$
  
$$p_{\rm c} = \rm Pr (\overline{\it A_{\rm 1}})\cdot \rm Pr (\overline{\it A_{\rm 2}} \hspace{0.05cm}|\hspace{0.05cm}\overline{\it A_{\rm 1}})\cdot \rm Pr (\overline{\it A_{\rm3}}\hspace{0.05cm}|\hspace{0.05cm}(\overline{\it A_{\rm 1}} \cap \overline{\it A_{\rm 2}} )) =\rm \frac{28}{32}\cdot\frac{27}{31}\cdot\frac{26}{30}\hspace{0.15cm}\underline{\approx 0.6605}.$$
+
*Diese Wahrscheinlichkeiten sind alle gleich – warum sollte es auch anders sein?
 +
*Wenn man bei drei Karten genau ein Ass zieht, ist es genau so wahrscheinlich, ob man dieses als erste, als zweite oder als dritte Karte zieht.
 +
*Damit erhält man für die Summe:
  
'''4.''' Diese Wahrscheinlichkeit kann man als die Summe dreier Wahrscheinlichkeiten ausdrücken, da die zugehörigen Ereignisse disjunkt sind:
+
:$$p_{\rm 4}= {\rm Pr} (D_1 \cup D_2 \cup D_3) \rm \hspace{0.15cm}\underline{= 0.3084}.$$
  
$$p_{\rm d} = \rm Pr (\it D_{\rm 1} \cup \it D_{\rm 2} \cup \it D_{\rm 3}) \rm \hspace{0.1cm}$$ mit :
 
$$\rm Pr (\it D_{\rm 1}) = \rm Pr (\it A_{\rm 1} \cap \overline{ \it A_{\rm 2}} \cap \overline{\it A_{\rm 3}}) = \rm \frac{4}{32}\cdot \frac{28}{31}\cdot \frac{27}{30}=\rm 0.1016,$$
 
$$\rm Pr (\it D_{\rm 2}) =  \rm Pr ( \overline{\it A_{\rm 1}} \cap \it A_{\rm 2} \cap \overline{\it A_{\rm 3}})  = \rm \frac{28}{32}\cdot \frac{4}{31}\cdot\frac{27}{30}=\rm 0.1016,$$
 
$$\rm Pr (\it D_{\rm 3}) =  \rm Pr ( \overline{\it A_{\rm 1}} \cap  \overline{\it A_{\rm 2}} \cap \it A_{\rm 3}) = \rm \frac{28}{32}\cdot \frac{27}{31}\cdot \frac{4}{30}=\rm 0.1016.$$
 
Diese Wahrscheinlichkeiten sind alle gleich – warum sollte es auch anders sein? Wenn man bei 3 Karten genau ein Ass zieht, ist es genau so wahrscheinlich, ob man dieses als erste, als zweite oder als dritte Karte zieht. Damit erhält man für die Summe $p_d$ = 0.3048.
 
  
'''5.'''Definiert man die Ereignisse <i>E<sub>i</sub></i> = &bdquo;es werden genau <i>i</i> Asse gezogen&rdquo; mit den Indizes <i>i</i> = 0, 1, 2, 3, so beschreiben <i>E</i><sub>0</sub>, <i>E</i><sub>1</sub>, <i>E</i><sub>2</sub> und <i>E</i><sub>3</sub> ein vollständiges System. Deshalb gilt:
+
'''(5)'''&nbsp; Definiert man die Ereignisse&nbsp; $E_i =$&nbsp; &raquo;Es werden genau&nbsp; $i$&nbsp; Asse gezogen&laquo;&nbsp; mit den Indizes&nbsp; $i = 0,\ 1,\ 2,\ 3$,  
$$p_{\rm e} = \rm Pr (\it E_{\rm 2}) = \rm 1 - \it p_{\rm b} -\it p_{\rm c} - \it p_{\rm d} \hspace{0.15cm}\underline{= \rm 0.0339}.$$
+
*so beschreiben&nbsp; $E_0$,&nbsp; $E_1$,&nbsp; $E_2$&nbsp; und $E_3$&nbsp; ein vollständiges System.  
 +
*Deshalb gilt:
 +
:$$p_{\rm 5} = \rm Pr ({\it E}_2) = \rm 1 - \it p_{\rm 2} -\it p_{\rm 3} - \it p_{\rm 4} \hspace{0.15cm}\underline{= \rm 0.0339}.$$
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Zeile 75: Zeile 107:
  
  
[[Category:Aufgaben zu Informationstheorie und Quellencodierung|^3.1 Einige Vorbemerkungen zu zweidimensionalen Zufallsgrößen^]]
+
[[Category:Aufgaben zu Informationstheorie|^3.1 Allgemeines zu 2D-Zufallsgrößen^]]

Aktuelle Version vom 16. August 2021, 16:11 Uhr

Das gewünschte Ergebnis
„Drei Asse werden gezogen”

Aus einem Kartenspiel mit  $32$  Karten, darunter vier Asse, werden nacheinander drei Karten herausgezogen.  Für Frage  (1)  wird vorausgesetzt, dass nach dem Ziehen einer Karte

  • diese in den Stapel zurückgelegt wird,
  • dieser neu gemischt wird und
  • anschließend die nächste Karte gezogen wird.


Dagegen sollen Sie für die weiteren Teilfragen ab  (2)  davon ausgehen, dass die drei Karten auf einmal gezogen werden  („Ziehen ohne Zurücklegen“).

  • Im Folgenden bezeichnen wir mit  $A_i$  das Ereignis, dass die zum Zeitpunkt  $i$  gezogene Karte ein Ass ist. 
    Hierbei ist  $i = 1,\ 2,\ 3$  zu setzen.
  • Das Komplementärereignis  $\overline{\it A_i}$  sagt aus, dass zum Zeitpunkt  $i$  kein Ass gezogen wird, sondern irgendeine andere Karte.






Hinweise:



Fragebogen

1

Betrachten Sie zunächst den Fall „Ziehen mit Zurücklegen“.  Wie groß ist die Wahrscheinlichkeit  $p_1$, dass drei Asse gezogen werden?

$p_1 \ = \ $

2

Mit welcher Wahrscheinlichkeit  $p_2$  werden drei Asse gezogen, wenn man die Karten nicht zurücklegt?  Warum ist  $p_2$  kleiner/gleich/größer als  $p_1$?

$p_2 \ = \ $

3

Betrachten Sie weiterhin den Fall „Ziehen ohne Zurücklegen“.  Wie groß ist die Wahrscheinlichkeit  $p_3$ , dass kein einziges Ass gezogen wird?

$p_3 \ = \ $

4

Wie groß ist die Wahrscheinlichkeit  $p_4$, dass im Fall „Ziehen ohne Zurücklegen“ genau ein Ass gezogen wird?

$p_4 \ = \ $

5

Wie groß ist die Wahrscheinlichkeit, dass zwei der drei gezogenen Karten Asse sind?
Hinweis:   Die Ereignisse „genau  $i$  Asse werden gezogen” mit  $i = 0,\ 1,\ 2,\ 3$  beschreiben ein so genanntes  „vollständiges System”.

$p_5 \ = \ $


Musterlösung

(1)  Werden die Karten nach dem Ziehen zurückgelegt, so ist zu jedem Zeitpunkt die Wahrscheinlichkeit für ein Ass gleich groß  $(1/8)$:

$$ p_{\rm 1} = \rm Pr (3 \hspace{0.1cm} Asse) = \rm Pr (\it A_{\rm 1} \rm )\cdot \rm Pr (\it A_{\rm 2} \rm )\cdot \rm Pr (\it A_{\rm 3} \rm ) = \rm \big({1}/{8}\big)^3 \hspace{0.15cm}\underline{\approx 0.002}.$$


(2)  Nun erhält man mit dem allgemeinen Multiplikationstheorem:

$$ p_{\rm 2} = \rm Pr (\it A_{\rm 1}\cap \it A_{\rm 2} \cap \it A_{\rm 3} \rm ) = \rm Pr (\it A_{\rm 1}\rm ) \cdot \rm Pr (\it A_{\rm 2} |\it A_{\rm 1}\rm ) \cdot \rm Pr (\it A_{\rm 3} |( \it A_{\rm 1}\cap \it A_{\rm 2} \rm )).$$
  • Die bedingten Wahrscheinlichkeiten können nach der klassischen Definition berechnet werden.
  • Man erhält somit das Ergebnis  $k/m$  $($bei  $m$  Karten sind noch  $k$  Asse enthalten$)$:
$$p_{\rm 2} =\rm \frac{4}{32}\cdot \frac{3}{31}\cdot\frac{2}{30}\hspace{0.15cm}\underline{ \approx 0.0008}.$$
  • $p_2$  ist kleiner als  $p_1$, da nun das zweite und dritte Ass unwahrscheinlicher sind als zuvor.


(3)  Analog zur Teilaufgabe  (2)  erhält man hier:

$$p_{\rm 3} = \rm Pr (\overline{\it A_{\rm 1}})\cdot \rm Pr (\overline{\it A_{\rm 2}} \hspace{0.05cm}|\hspace{0.05cm}\overline{\it A_{\rm 1}})\cdot \rm Pr (\overline{\it A_{\rm3}}\hspace{0.05cm}|\hspace{0.05cm}(\overline{\it A_{\rm 1}} \cap \overline{\it A_{\rm 2}} )) =\rm \frac{28}{32}\cdot\frac{27}{31}\cdot\frac{26}{30}\hspace{0.15cm}\underline{\approx 0.6605}.$$


(4)  Diese Wahrscheinlichkeit kann man als die Summe dreier Wahrscheinlichkeiten ausdrücken.   ⇒   $p_{\rm 4} = \rm Pr (\it D_{\rm 1} \cup \it D_{\rm 2} \cup \it D_{\rm 3}) $.

  • Die zugehörigen Ereignisse  ${\rm Pr}(D_1)$,  ${\rm Pr}(D_2)$  und  ${\rm Pr}(D_3)$  sind disjunkt:
$${\rm Pr} (D_1) = {\rm Pr} (A_1 \cap \overline{ \it A_{\rm 2}} \cap \overline{\it A_{\rm 3}}) = \rm \frac{4}{32}\cdot \frac{28}{31}\cdot \frac{27}{30}=\rm 0.1016,$$
$${\rm Pr} (D_2) = {\rm Pr} ( \overline{A_1} \cap A_2 \cap \overline{A_3}) = \rm \frac{28}{32}\cdot \frac{4}{31}\cdot\frac{27}{30}=\rm 0.1016,$$
$${\rm Pr} (D_3) = {\rm Pr} ( \overline{A_1} \cap \overline{A_2} \cap A_3) = \rm \frac{28}{32}\cdot \frac{27}{31}\cdot \frac{4}{30}=\rm 0.1016.$$
  • Diese Wahrscheinlichkeiten sind alle gleich – warum sollte es auch anders sein?
  • Wenn man bei drei Karten genau ein Ass zieht, ist es genau so wahrscheinlich, ob man dieses als erste, als zweite oder als dritte Karte zieht.
  • Damit erhält man für die Summe:
$$p_{\rm 4}= {\rm Pr} (D_1 \cup D_2 \cup D_3) \rm \hspace{0.15cm}\underline{= 0.3084}.$$


(5)  Definiert man die Ereignisse  $E_i =$  »Es werden genau  $i$  Asse gezogen«  mit den Indizes  $i = 0,\ 1,\ 2,\ 3$,

  • so beschreiben  $E_0$,  $E_1$,  $E_2$  und $E_3$  ein vollständiges System.
  • Deshalb gilt:
$$p_{\rm 5} = \rm Pr ({\it E}_2) = \rm 1 - \it p_{\rm 2} -\it p_{\rm 3} - \it p_{\rm 4} \hspace{0.15cm}\underline{= \rm 0.0339}.$$