Aufgaben:Aufgabe 4.6: Quantisierungskennlinien: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(12 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)
Zeile 3: Zeile 3:
 
}}
 
}}
  
[[Datei:P_ID1623__Mod_Z_4_5.png|right|]]
+
[[Datei:P_ID1623__Mod_Z_4_5.png|right|frame|Nichtlineare Quantisierungskennlinien]]
Es wird die nichtlineare Quantisierung betrachtet und es gilt weiterhin das Systemmodell gemäß [http://www.lntwww.de/Aufgaben:4.5_Nichtlineare_Quantisierung Aufgabe A4.5]. Die Grafik zeigt zwei Kompressorkennlinien $q_K(q_A)$:
+
Es wird die nichtlineare Quantisierung betrachtet und es gilt weiterhin das Systemmodell gemäß  [[Aufgaben:4.5_Nichtlineare_Quantisierung| Aufgabe 4.5]].  
:* Rot eingezeichnet ist die sogenannte A–Kennlinie, die vom CCITT für das Standardsystem PCM 30/32 empfohlen wurde. Für $0 ≤ q_A ≤ 1$ gilt:
+
 
$$q_{\rm K}(q_{\rm A}) = \left\{ \begin{array}{l} \frac{1 \hspace{0.05cm}+\hspace{0.05cm} {\rm ln}(A \hspace{0.05cm}\cdot \hspace{0.05cm}q_{\rm A})} {1 \hspace{0.05cm}+ \hspace{0.05cm}{\rm ln}(A )} \\ \\ \frac{A \hspace{0.05cm}\cdot \hspace{0.05cm}q_{\rm A}} {1 \hspace{0.05cm}+ \hspace{0.05cm}{\rm ln}(A )} \\ \end{array} \right.\quad \begin{array}{*{10}c} {\frac{1}{A} \le q_{\rm A} \le 1} \hspace{0.05cm}, \\ \\ {q_{\rm A} < \frac{1}{A}} \hspace{0.05cm}. \\ \end{array}$$
+
Die Grafik zeigt zwei Kompressorkennlinien &nbsp;$q_{\rm K}(q_{\rm A})$:
:* Der blau–gestrichelte Kurvenzug gilt für die sog. 13–Segment–Kennlinie. Diese ergibt sich aus der A–Kennlinie durch stückweise Linearisierung; sie wird in der Aufgabe A4.5 ausführlich behandelt.
+
* Rot eingezeichnet ist die sogenannte &nbsp; '''A–Kennlinie''',&nbsp; die vom CCITT&nbsp; ("Comité Consultatif International Téléphonique et Télégraphique")&nbsp; für das Standardsystem PCM 30/32 empfohlen wurde.&nbsp; Für &nbsp;$0 ≤ q_{\rm A} ≤ 1$&nbsp; gilt hier:
 +
:$$q_{\rm K}(q_{\rm A}) = \left\{ \begin{array}{l} \frac{1 \hspace{0.05cm}+\hspace{0.05cm} {\rm ln}(A \hspace{0.05cm}\cdot \hspace{0.05cm}q_{\rm A})} {1 \hspace{0.05cm}+ \hspace{0.05cm}{\rm ln}(A )} \\ \\ \frac{A \hspace{0.05cm}\cdot \hspace{0.05cm}q_{\rm A}} {1 \hspace{0.05cm}+ \hspace{0.05cm}{\rm ln}(A )} \\ \end{array} \right.\quad \begin{array}{*{10}c} {{1}/{A} \le q_{\rm A} \le 1} \hspace{0.05cm}, \\ \\ {q_{\rm A} < {1}/{A}} \hspace{0.05cm}. \\ \end{array}$$
 +
* Der blau–gestrichelte Kurvenzug gilt für die so genannte &nbsp; '''13–Segment–Kennlinie'''.&nbsp; Diese ergibt sich aus der A–Kennlinie durch stückweise Linearisierung;&nbsp; sie wird in der&nbsp; [[Aufgaben:4.5_Nichtlineare_Quantisierung| Aufgabe 4.5]]&nbsp; ausführlich behandelt.
 +
 
 +
 
 +
 
 +
 
 +
 
 +
Hinweise:
 +
*Die Aufgabe gehört zum  Kapitel&nbsp; [[Modulationsverfahren/Pulscodemodulation|"Pulscodemodulation"]].
 +
*Bezug genommen wird insbesondere auf die Seite  [[Modulationsverfahren/Pulscodemodulation#Kompression_und_Expandierung|"Kompression und Expandierung"]].
 +
*Für die durchgehend rot gezeichnete A-Kennlinie ist der Quantisierungsparameter &nbsp;$A = 100$&nbsp; gewählt.&nbsp; <br>Mit dem vom CCITT vorgeschlagenen Wert &nbsp;$A = 87.56$&nbsp; ergibt sich ein ähnlicher Verlauf.
 +
*Für die beiden weiteren Kurven gilt &nbsp;$A = A_1$ &nbsp; (strich&ndash;punktierte Kurve)&nbsp; bzw. &nbsp; $A = A_2$&nbsp; (punktierte Kurve),&nbsp; wobei für &nbsp;$A_1$&nbsp; bzw. &nbsp;$A_2$&nbsp; die beiden möglichen Zahlenwerte &nbsp;$50$&nbsp; und &nbsp;$200$&nbsp; vorgegeben sind.&nbsp; In der Teilaufgabe&nbsp; '''(3)'''&nbsp; sollen Sie entscheiden,&nbsp; welche Kurve zu welchem Zahlenwert gehört.
  
Für die durchgehend rot gezeichnete A-Kennlinie ist der Quantisierungsparameter A = 100 gewählt. Mit dem vom CCITT vorgeschlagenen Wert A = 87.56 ergibt sich näherungsweise der gleiche Verlauf. Für die beiden weiteren Kurven gilt $A = A_1$ (oberer Kurvenzug) bzw. $A = A_2$ (punktierte Kurve), wobei für $A_1$ bzw. $A_2$ die beiden möglichen Zahlenwerte 50 und 200 vorgegeben sind. In der Teilaufgabe c) sollen Sie entscheiden, welche Kurve zu welchem Wert gehört.
 
  
'''Hinweis:''' Die Aufgabe bezieht sich auf die [http://www.lntwww.de/Modulationsverfahren/Pulscodemodulation#Nichtlineare_Quantisierung_.281.29 letzte Theorieseite] von Kapitel 4.1.
 
  
  
Zeile 23: Zeile 33:
 
+ Die Verfälschung kleiner Amplituden ist subjektiv störender.
 
+ Die Verfälschung kleiner Amplituden ist subjektiv störender.
  
{Welche Unterschiede gibt es zwischen der A– und der 13–Segment–Kennlinie?
+
{Welche Unterschiede gibt es zwischen der A–Kennlinie und der 13–Segment–Kennlinie?
 
|type="[]"}
 
|type="[]"}
 
+ Die A–Kennlinie beschreibt einen kontinuierlichen Verlauf.
 
+ Die A–Kennlinie beschreibt einen kontinuierlichen Verlauf.
+ Die 13–Seg–Kurve nähert die A–Kennlinie stückweise linear an.
+
+ Die 13–Segment–Kurve nähert die A–Kennlinie stückweise linear an.
 
- Bei der Realisierung zeigt die A–Kennlinie wesentliche Vorteile.
 
- Bei der Realisierung zeigt die A–Kennlinie wesentliche Vorteile.
  
{Lässt sich allein aus $q_A = 1 q_K = 1$ der Parameter A ableiten?
+
{Lässt sich allein aus &nbsp;$q_{\rm A} = 1$  &nbsp;   &nbsp; $q_{\rm K} = 1$&nbsp; der Parameter &nbsp;$A$&nbsp; ableiten?
|type="[]"}
+
|type="()"}
ja
+
Ja.
+ nein
+
+ Nein.
  
{Lässt sich A bestimmen, wenn man vorgibt, dass der Übergang zwischen den beiden Bereichen kontinuierlich sein soll?  
+
{Lässt sich &nbsp;$A$&nbsp; bestimmen,&nbsp; wenn man vorgibt,&nbsp; dass der Übergang zwischen den beiden Bereichen kontinuierlich sein soll?  
|type="[]"}
+
|type="()"}
- ja
+
- Ja.
+ nein
+
+ Nein.
  
{Bestimmen Sie A aus der Bedingung $q_K(q_A = 1/2) = 0.875$.
+
{Bestimmen Sie &nbsp;$A$&nbsp; aus der Bedingung &nbsp;$q_{\rm K}(q_{\rm A} = 1/2) = 0.8756$.
 
|type="{}"}
 
|type="{}"}
$q_K(q_A = 1/2) = 0.875:  A$ = { 94 3% }  
+
$A \ = \ $ { 94 3% }  
  
{Welche Parameterwerte werden für die weiteren Kurven verwendet?
+
{Welche Parameterwerte wurden für die weiteren Kurven verwendet?
|type="[]"}
+
|type="()"}
- Es gilt $A_1 = 50$ und $A_2 = 200$.
+
- Es gilt &nbsp;$A_1 = 50$&nbsp; und &nbsp;$A_2 = 200$.
+ Es gilt $A_1 = 200$ und $A_2 = 50$.
+
+ Es gilt &nbsp;$A_1 = 200$&nbsp; und &nbsp;$A_2 = 50$.
  
  
Zeile 56: Zeile 66:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.''' Die Impulsantwort $h_K(t)$ ergibt sich als das Empfangssignal r(t), wenn am Eingang ein Diracimpuls anliegt ⇒ $s(t) = δ(t)$. Daraus folgt
+
 
$$ h_{\rm K}(t) = 0.6 \cdot \delta (t ) + 0.4 \cdot \delta (t - \tau) \hspace{0.05cm}.$$
+
'''(1)'''&nbsp; Richtig sind die&nbsp; <u>Aussagen 2 und 3</u>:
Richtig ist also der Lösungsvorschlag 1.
+
*Eine Signalverfälschung von leisen Tönen oder in Sprachpausen wird subjektiv als störender empfunden als zum Beispiel ein zusätzliches Geräusch bei Heavy Metal.
 +
*Bezüglich des Quantisierungsrauschens bzw. des SNR gibt es durch eine nichtlineare Quantisierung allerdings keine Verbesserung,&nbsp; wenn von einer Gleichverteilung der Amplitudenwerte ausgegangen wird.  
 +
*Berücksichtigt man aber,&nbsp; dass bei Sprach– und Musiksignalen kleinere Amplituden sehr viel häufiger auftreten als große &nbsp; &rArr; &nbsp; "Laplaceverteilung",&nbsp; so ergibt sich durch die nichtlineare Quantisierung auch ein besseres SNR.
 +
 
 +
 
 +
 
 +
'''(2)'''&nbsp; Richtig sind die&nbsp; <u>Aussagen 1 und 2</u>:
 +
*Durch die Linearisierung in den einzelnen Segmenten ist in diesen bei der 13–Segment–Kennlinie die Intervallbreite der verschiedenen Quantisierungsstufen konstant,&nbsp; was sich bei der Realisierung günstig auswirkt.
 +
*Dagegen gibt es bei der nichtlinearen Quantisierung gemäß der A–Kennlinie keine Quantisierungsintervalle gleicher Breite.&nbsp; Das bedeutet: &nbsp; Die Aussage 3 ist falsch.
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp; Richtig ist&nbsp; "<u>NEIN</u>":
 +
*Für&nbsp; $q_{\rm A} = 1$&nbsp; erhält man unabhängig von&nbsp; $A$&nbsp; den Wert&nbsp; $q_{\rm K} = 1$.
 +
*Allein mit dieser Vorgabe kann&nbsp; $A$&nbsp; also nicht ermittelt werden.
 +
 +
 
 +
 
 +
'''(4)'''&nbsp; Richtig ist wiederum&nbsp;  "<u>NEIN</u>":
 +
*Für&nbsp; $q_{\rm A} = 1/A$&nbsp; liefern beide Bereichsgleichungen den gleichen Wert&nbsp; $q_{\rm K}= 1/[1 + \ln(A)]$.
 +
*Auch damit kann&nbsp; $A$&nbsp; nicht bestimmt werden.  
 +
 
 +
 
 +
 
 +
'''(5)'''&nbsp; Mit dieser Forderung ist&nbsp; $A$&nbsp; nun berechenbar:
 +
:$$0.875 = \frac{1 \hspace{0.05cm}+\hspace{0.05cm} {\rm ln}(A/2)} {1
 +
\hspace{0.05cm}+ \hspace{0.05cm}{\rm ln}(A )} =
 +
\frac{1\hspace{0.05cm}-\hspace{0.05cm} {\rm ln}(2)
 +
\hspace{0.05cm}+\hspace{0.05cm} {\rm ln}(A)} {1 \hspace{0.05cm}+
 +
\hspace{0.05cm}{\rm ln}(A )}\approx \frac{1-0.693
 +
\hspace{0.05cm}+\hspace{0.05cm} {\rm ln}(A)} {1 \hspace{0.05cm}+
 +
\hspace{0.05cm}{\rm ln}(A )}\hspace{0.3cm}
 +
\Rightarrow \hspace{0.3cm}{\rm ln}(A) = \frac{0.875 - 0.307 } {1
 +
-0.875 }= 4.544 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} A \hspace{0.15cm}\underline {\approx
 +
94} \hspace{0.05cm}.$$
 +
 
  
  
'''2.''' Der Kanalfrequenzgang $H_K(f)$ ist definitionsgemäß die Fouriertransformierte der Impulsantwort $h_K(t)$. Mit dem Verschiebungssatz ergibt sich hierfür:
+
'''(6)'''&nbsp; Richtig ist die <u>Aussage 2</u>:
$$H_{\rm K}(f) = 0.6 + 0.4 \cdot {\rm e}^{ \hspace{0.03cm}{\rm j} \hspace{0.03cm} \cdot \hspace{0.03cm}2 \pi f \tau}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} H_{\rm K}(f= 0) = 0.6 + 0.4 = 1 \hspace{0.05cm}.$$
+
*Die Kurve für &nbsp; $A_1 = 200$ &nbsp; liegt oberhalb der Kurve mit &nbsp; $A = 100$,&nbsp; die Kurve mit &nbsp;$A_2 = 50$&nbsp; unterhalb.  
Der erste Lösungsvorschlag ist dementsprechend falsch im Gegensatz zu den beiden anderen: $H_K(f)$ ist komplexwertig und der Betrag ist periodisch mit $1/τ$, wie die nachfolgende Rechnung zeigt:
+
*Dies zeigt die folgende Rechnung,&nbsp; gültig  für &nbsp;$q_{\rm A} = 0.5$:
$$|H_{\rm K}(f)|^2 = \left [0.6 + 0.4 \cdot \cos(2 \pi f \tau) \right ]^2 + \left [ 0.4 \cdot \sin(2 \pi f \tau) \right ]^2 =$$
+
:$$A= 100\text{:}\hspace{0.2cm} q_{\rm K}= \frac{1 + \ln(100) - \ln(2)}{1 + \ln(100)}=
$$ =  \left [0.6^2 + 0.4^2 \cdot \left ( \cos^2(2 \pi f \tau) + \sin^2(2 \pi f \tau)\right ) \right ] + 2 \cdot 0.6 \cdot 0.4 \cdot \cos(2 \pi f \tau)$$
+
\frac{1+4.605- 0.693} {1 +4.605}\approx
$$\Rightarrow \hspace{0.3cm}|H_{\rm K}(f)| = \sqrt { 0.52 + 0.48 \cdot \cos(2 \pi f \tau) } \hspace{0.05cm}.$$
+
0.876  \hspace{0.05cm},$$
Für $f = 0$ ist $|H_K(f)| = 1$. Im jeweiligen Frequenzabstand $1/τ$ wiederholt sich dieser Wert.
+
:$$A= 200\text{:}\hspace{0.2cm} q_{\rm K}= \frac{1+5.298- 0.693} {1 +5.298}\approx
 +
0.890  \hspace{0.05cm},$$
 +
:$$A= 50\text{:}\hspace{0.4cm} q_{\rm K}= \frac{1+3.912- 0.693} {1 +3.912}\approx
 +
0.859  \hspace{0.05cm}.$$
  
  
'''3.'''  Wir setzen zunächst vereinbarungsgemäß K = 1. Insgesamt kommt man über vier Wege von $s(t)$ zum Ausgangssignal $b(t)$. Um die vorgegebene $h_{KR}(t)$–Gleichung zu erfüllen, muss entweder $τ_0 = 0$ gelten oder $τ_1 = 0$. Mit $τ_0 = 0$ erhält man für die Impulsantwort:
 
$$h_{\rm KR}(t)  =  0.6 \cdot h_0 \cdot \delta (t ) + 0.4 \cdot h_0 \cdot \delta (t - \tau) +$$
 
$$ +  0.6 \cdot h_1 \cdot \delta (t -\tau_1) + 0.4 \cdot h_1 \cdot \delta (t - \tau-\tau_1) \hspace{0.05cm}.$$
 
Um die „Hauptenergie” auf einen Zeitpunkt bündeln zu können, müsste dann $τ_1 = τ$ gewählt werden. Mit $h_0 = 0.6$ und $h_1 = 0.4$ erhält man dann $A_0 ≠ A_2$:
 
$$ h_{\rm KR}(t) = 0.36 \cdot \delta (t ) +0.48 \cdot \delta (t - \tau) + 0.16 \cdot \delta (t - 2\tau)\hspace{0.05cm}.$$
 
Dagegen ergibt sich mit $h_0 = 0.6$, $h_1 = 0.4$, $τ_0 = τ$ und $τ_1 = 0$:
 
$$h_{\rm KR}(t)  =  0.6 \cdot h_0 \cdot \delta (t - \tau ) + 0.4 \cdot h_0 \cdot \delta (t - 2\tau) +$$
 
$$  +  0.6 \cdot h_1 \cdot \delta (t) + 0.4 \cdot h_1 \cdot \delta (t - \tau)=$$
 
$$ =  0.24 \cdot \delta (t ) +0.52 \cdot \delta (t - \tau) + 0.24 \cdot \delta (t - 2\tau) \hspace{0.05cm}.$$
 
Hier ist die Zusatzbedingung $A_0 = A_2$ erfüllt. Somit lautet das gesuchte Ergebnis:
 
$$\underline{\tau_0 = \tau = 1\,{\rm \mu s} \hspace{0.05cm},\hspace{0.2cm}\tau_1 =0} \hspace{0.05cm}.$$
 
  
'''4.''' Für den Normierungsfaktor muss gelten:
 
$$ K= \frac{1}{h_0^2 + h_1^2} = \frac{1}{0.6^2 + 0.4^2} = \frac{1}{0.52} \hspace{0.15cm}\underline {\approx 1.923} \hspace{0.05cm}.$$
 
Damit erhält man für die gemeinsame Impulsantwort (es gilt 0.24/0.52 = 6/13):
 
$$ h_{\rm KR}(t) = \frac{6}{13} \cdot \delta (t ) + 1.00 \cdot \delta (t - \tau) + \frac{6}{13} \cdot \delta (t - 2\tau)\hspace{0.05cm}.$$
 
 
'''5.''' Für das Empfangssignal $r(t)$ und für das RAKE–Ausgangssignal $b(t)$ gilt:
 
$$r(t)  =  0.6 \cdot s(t) + 0.4 \cdot s (t - 1\,{\rm \mu s})\hspace{0.05cm},$$
 
$$b(t)  =  \frac{6}{13} \cdot s(t) + 1.00 \cdot s (t - 1\,{\rm \mu s}) + \frac{6}{13} \cdot s (t - 2\,{\rm \mu s}) \hspace{0.05cm}.$$
 
Richtig sind die Aussagen 1 und 4, wie die folgende Grafik zeigt. Die Überhöhung des Ausgangssignals  ⇒  $b(t) > 1$ ist auf den Normierungsfaktor K = 25/13 zurückzuführen. Mit K = 1 wäre der Maximalwert von $b(t)$ tatsächlich 1.
 
[[Datei:P_ID1902__Mod_Z_5_5e.png]]
 
  
  

Aktuelle Version vom 10. April 2022, 10:36 Uhr

Nichtlineare Quantisierungskennlinien

Es wird die nichtlineare Quantisierung betrachtet und es gilt weiterhin das Systemmodell gemäß  Aufgabe 4.5.

Die Grafik zeigt zwei Kompressorkennlinien  $q_{\rm K}(q_{\rm A})$:

  • Rot eingezeichnet ist die sogenannte   A–Kennlinie,  die vom CCITT  ("Comité Consultatif International Téléphonique et Télégraphique")  für das Standardsystem PCM 30/32 empfohlen wurde.  Für  $0 ≤ q_{\rm A} ≤ 1$  gilt hier:
$$q_{\rm K}(q_{\rm A}) = \left\{ \begin{array}{l} \frac{1 \hspace{0.05cm}+\hspace{0.05cm} {\rm ln}(A \hspace{0.05cm}\cdot \hspace{0.05cm}q_{\rm A})} {1 \hspace{0.05cm}+ \hspace{0.05cm}{\rm ln}(A )} \\ \\ \frac{A \hspace{0.05cm}\cdot \hspace{0.05cm}q_{\rm A}} {1 \hspace{0.05cm}+ \hspace{0.05cm}{\rm ln}(A )} \\ \end{array} \right.\quad \begin{array}{*{10}c} {{1}/{A} \le q_{\rm A} \le 1} \hspace{0.05cm}, \\ \\ {q_{\rm A} < {1}/{A}} \hspace{0.05cm}. \\ \end{array}$$
  • Der blau–gestrichelte Kurvenzug gilt für die so genannte   13–Segment–Kennlinie.  Diese ergibt sich aus der A–Kennlinie durch stückweise Linearisierung;  sie wird in der  Aufgabe 4.5  ausführlich behandelt.



Hinweise:

  • Die Aufgabe gehört zum Kapitel  "Pulscodemodulation".
  • Bezug genommen wird insbesondere auf die Seite "Kompression und Expandierung".
  • Für die durchgehend rot gezeichnete A-Kennlinie ist der Quantisierungsparameter  $A = 100$  gewählt. 
    Mit dem vom CCITT vorgeschlagenen Wert  $A = 87.56$  ergibt sich ein ähnlicher Verlauf.
  • Für die beiden weiteren Kurven gilt  $A = A_1$   (strich–punktierte Kurve)  bzw.   $A = A_2$  (punktierte Kurve),  wobei für  $A_1$  bzw.  $A_2$  die beiden möglichen Zahlenwerte  $50$  und  $200$  vorgegeben sind.  In der Teilaufgabe  (3)  sollen Sie entscheiden,  welche Kurve zu welchem Zahlenwert gehört.



Fragebogen

1

Welche Argumente sprechen für die nichtlineare Quantisierung?

Das größere SNR – auch bei gleichwahrscheinlichen Amplituden.
Bei Audio sind kleine Amplituden wahrscheinlicher als große.
Die Verfälschung kleiner Amplituden ist subjektiv störender.

2

Welche Unterschiede gibt es zwischen der A–Kennlinie und der 13–Segment–Kennlinie?

Die A–Kennlinie beschreibt einen kontinuierlichen Verlauf.
Die 13–Segment–Kurve nähert die A–Kennlinie stückweise linear an.
Bei der Realisierung zeigt die A–Kennlinie wesentliche Vorteile.

3

Lässt sich allein aus  $q_{\rm A} = 1$   ⇒   $q_{\rm K} = 1$  der Parameter  $A$  ableiten?

Ja.
Nein.

4

Lässt sich  $A$  bestimmen,  wenn man vorgibt,  dass der Übergang zwischen den beiden Bereichen kontinuierlich sein soll?

Ja.
Nein.

5

Bestimmen Sie  $A$  aus der Bedingung  $q_{\rm K}(q_{\rm A} = 1/2) = 0.8756$.

$A \ = \ $

6

Welche Parameterwerte wurden für die weiteren Kurven verwendet?

Es gilt  $A_1 = 50$  und  $A_2 = 200$.
Es gilt  $A_1 = 200$  und  $A_2 = 50$.


Musterlösung

(1)  Richtig sind die  Aussagen 2 und 3:

  • Eine Signalverfälschung von leisen Tönen oder in Sprachpausen wird subjektiv als störender empfunden als zum Beispiel ein zusätzliches Geräusch bei Heavy Metal.
  • Bezüglich des Quantisierungsrauschens bzw. des SNR gibt es durch eine nichtlineare Quantisierung allerdings keine Verbesserung,  wenn von einer Gleichverteilung der Amplitudenwerte ausgegangen wird.
  • Berücksichtigt man aber,  dass bei Sprach– und Musiksignalen kleinere Amplituden sehr viel häufiger auftreten als große   ⇒   "Laplaceverteilung",  so ergibt sich durch die nichtlineare Quantisierung auch ein besseres SNR.


(2)  Richtig sind die  Aussagen 1 und 2:

  • Durch die Linearisierung in den einzelnen Segmenten ist in diesen bei der 13–Segment–Kennlinie die Intervallbreite der verschiedenen Quantisierungsstufen konstant,  was sich bei der Realisierung günstig auswirkt.
  • Dagegen gibt es bei der nichtlinearen Quantisierung gemäß der A–Kennlinie keine Quantisierungsintervalle gleicher Breite.  Das bedeutet:   Die Aussage 3 ist falsch.


(3)  Richtig ist  "NEIN":

  • Für  $q_{\rm A} = 1$  erhält man unabhängig von  $A$  den Wert  $q_{\rm K} = 1$.
  • Allein mit dieser Vorgabe kann  $A$  also nicht ermittelt werden.


(4)  Richtig ist wiederum  "NEIN":

  • Für  $q_{\rm A} = 1/A$  liefern beide Bereichsgleichungen den gleichen Wert  $q_{\rm K}= 1/[1 + \ln(A)]$.
  • Auch damit kann  $A$  nicht bestimmt werden.


(5)  Mit dieser Forderung ist  $A$  nun berechenbar:

$$0.875 = \frac{1 \hspace{0.05cm}+\hspace{0.05cm} {\rm ln}(A/2)} {1 \hspace{0.05cm}+ \hspace{0.05cm}{\rm ln}(A )} = \frac{1\hspace{0.05cm}-\hspace{0.05cm} {\rm ln}(2) \hspace{0.05cm}+\hspace{0.05cm} {\rm ln}(A)} {1 \hspace{0.05cm}+ \hspace{0.05cm}{\rm ln}(A )}\approx \frac{1-0.693 \hspace{0.05cm}+\hspace{0.05cm} {\rm ln}(A)} {1 \hspace{0.05cm}+ \hspace{0.05cm}{\rm ln}(A )}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}{\rm ln}(A) = \frac{0.875 - 0.307 } {1 -0.875 }= 4.544 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} A \hspace{0.15cm}\underline {\approx 94} \hspace{0.05cm}.$$


(6)  Richtig ist die Aussage 2:

  • Die Kurve für   $A_1 = 200$   liegt oberhalb der Kurve mit   $A = 100$,  die Kurve mit  $A_2 = 50$  unterhalb.
  • Dies zeigt die folgende Rechnung,  gültig für  $q_{\rm A} = 0.5$:
$$A= 100\text{:}\hspace{0.2cm} q_{\rm K}= \frac{1 + \ln(100) - \ln(2)}{1 + \ln(100)}= \frac{1+4.605- 0.693} {1 +4.605}\approx 0.876 \hspace{0.05cm},$$
$$A= 200\text{:}\hspace{0.2cm} q_{\rm K}= \frac{1+5.298- 0.693} {1 +5.298}\approx 0.890 \hspace{0.05cm},$$
$$A= 50\text{:}\hspace{0.4cm} q_{\rm K}= \frac{1+3.912- 0.693} {1 +3.912}\approx 0.859 \hspace{0.05cm}.$$