Aufgaben:Aufgabe 4.Zehn: QPSK–Kanalkapazität: Unterschied zwischen den Versionen
Khalil (Diskussion | Beiträge) |
Khalil (Diskussion | Beiträge) |
||
Zeile 66: | Zeile 66: | ||
:* 4–QAM (vierstufige Quadraturamplitudenmodulation). | :* 4–QAM (vierstufige Quadraturamplitudenmodulation). | ||
− | Letztere wird auch als [[Informationstheorie/ | + | Letztere wird auch als [[Informationstheorie/Anwendung_auf_die_Digitalsignalübertragung#Definition_und_Bedeutung_der_Kanalkapazit.C3.A4t|'''π/4–QPSK''']] bezeichnet. Beide sind aus informationstechnischer Sicht identisch ⇒ <u>Antwort NEIN</u>. |
− | '''2 | + | |
+ | '''(2)''' Richtig ist der <u>Lösungsvorschlag 1</u>: Die 4–QAM kann man als zwei BPSK–Konstellationen in orthogonalen Ebenen betrachten, wobei die Energie pro Informationsbit (<i>E</i><sub>B</sub>) in beiden Fällen gleich ist. Da entsprechend Teilaufgabe (a) die 4–QAM mit der QSPK identisch ist, gilt tatsächlich <i>C</i><sub>QPSK</sub>(<i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>) = 2 · <i>C</i><sub>BPSK</sub>(<i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>). | ||
+ | <br><br><br><br> | ||
'''3.''' | '''3.''' | ||
'''4.''' | '''4.''' |
Version vom 20. April 2017, 01:12 Uhr
Gegeben sind AWGN–Kanalkapazitätskurven für die beiden Modulationsverfahren
- Binary Phase Shift Keying (BPSK),
- Quaternary Phase Shift Keying (4–PSK oder auch QPSK).
Das obere Diagramm zeigt die Abhängigkeit von 10 · lg (EB/N0) in dB, wobei EB die „Energie pro Informationsbit” angibt. Für große EB/N0–Werte liefert die BPSK–Kurve die maximale Coderate R ≈ 1, während für die QPSK–Kurve R ≈ 2 abgelesen werden kann.
Die Kapazitätskurven für digitalen Eingang (jeweils mit der Einheit „bit/Symbol”),
- grüne Kurve CBPSK(EB/N0) und
- blaue Kurve CQPSK(EB/N0)
sollen in der Teilaufgabe (c) in Bezug gesetzt werden zu zwei Shannon–Grenzkurven, die jeweils für eine Gaußsche Eingangsverteilung gültig sind: $$C_1( E_{\rm B}/{N_0}) = \frac{1}{2} \cdot {\rm log}_2 \hspace{0.1cm} ( 1 + \frac { 2\hspace{0.05cm}R\hspace{0.05cm} E_{\rm B}}{N_0}) ,$$ $$C_2( E_{\rm B}/{N_0}) = {\rm log}_2 \hspace{0.1cm} ( 1 + \frac { R\hspace{0.05cm} E_{\rm B}}{N_0}) .$$ Die beiden Kurven geben gleichzeitig die maximale Coderate R an, mit der durch lange Kanalcodes eine fehlerfreie Übertragung entsprechend dem Kanalcodierungstheorem möglich ist. Natürlich gelten für C1(EB/N0) bzw. C2(EB/N0) unterschiedliche Randbedingungen. Welche, sollen Sie herausfinden.
Die Abszisse im unteren Diagramm ist dagegen 10 · lg (ES/N0) mit der „Energie pro Symbol” (ES). Die beiden Endwerte bleiben gegenüber oben unverändert.
Hinweis :
- Die Aufgabe gehört zum Themengebiet von Kapitel 4.3.
Fragebogen
Musterlösung
(1) Die Grafik zeigt die Signalraumkonstellationen für
- QPSK (Quaternary Phase Shift Keying), und
- 4–QAM (vierstufige Quadraturamplitudenmodulation).
Letztere wird auch als π/4–QPSK bezeichnet. Beide sind aus informationstechnischer Sicht identisch ⇒ Antwort NEIN.
(2) Richtig ist der Lösungsvorschlag 1: Die 4–QAM kann man als zwei BPSK–Konstellationen in orthogonalen Ebenen betrachten, wobei die Energie pro Informationsbit (EB) in beiden Fällen gleich ist. Da entsprechend Teilaufgabe (a) die 4–QAM mit der QSPK identisch ist, gilt tatsächlich CQPSK(EB/N0) = 2 · CBPSK(EB/N0).
3.
4.
5.
6.
7.