Aufgaben:Aufgabe 3.1Z: Karten ziehen: Unterschied zwischen den Versionen
Zeile 80: | Zeile 80: | ||
− | [[Category:Aufgaben zu Informationstheorie|^3.1 | + | [[Category:Aufgaben zu Informationstheorie|^3.1 Allgemeines zu 2D-Zufallsgrößen^]] |
Version vom 5. Juni 2017, 11:53 Uhr
Aus einem Kartenspiel mit 32 Karten, darunter vier Asse, werden nacheinander drei Karten herausgezogen. Für Frage (1) wird vorausgesetzt, dass nach dem Ziehen einer Karte
- diese in den Stapel zurückgelegt wird,
- dieser neu gemischt wird und
- anschließend die nächste Karte gezogen wird.
Dagegen sollen Sie für die weiteren Teilfragen ab (2) davon ausgehen, dass die drei Karten auf einmal gezogen werden („Ziehen ohne Zurücklegen“).
Im Folgenden bezeichnen wir mit $A_i$ das Ereignis, dass die zum Zeitpunkt $i$ gezogene Karte ein Ass ist. Hierbei ist $i = 1, 2, 3$ zu setzen. Das Komplementärereignis sagt dann aus, dass zum Zeitpunkt $i$ kein Ass, sondern irgend eine andere Karte gezogen wird.
Hinweise:
- Die Aufgabe gehört zum Kapitel Einige Vorbemerkungen zu den 2D-Zufallsgrößen.
- Wiederholt wird hier insbesondere der Lehrstoff des Kapitels Statistische Abhängigkeit und Unabhängigkeit im Buch „Stochastische_Signaltheorie”.
- Eine Zusammenfassung der theoretischen Grundlagen mit Beispielen bringt das Lernvideo Statistische Abhängigkeit und Unabhängigkeit.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
Fragebogen
Musterlösung
- $$ p_{\rm 1} = \rm Pr (3 \hspace{0.1cm} Asse) = \rm Pr (\it A_{\rm 1} \rm )\cdot \rm Pr (\it A_{\rm 2} \rm )\cdot \rm Pr (\it A_{\rm 3} \rm ) = \rm \big({1}/{8}\big)^3 \hspace{0.15cm}\underline{\approx 0.002}.$$
(2) Nun erhält man mit dem allgemeinen Multiplikationstheorem:
- $$ p_{\rm 2} = \rm Pr (\it A_{\rm 1}\cap \it A_{\rm 2} \cap \it A_{\rm 3} \rm ) = \rm Pr (\it A_{\rm 1}\rm ) \cdot \rm Pr (\it A_{\rm 2} |\it A_{\rm 1}\rm ) \cdot \rm Pr (\it A_{\rm 3} |( \it A_{\rm 1}\cap \it A_{\rm 2} \rm )).$$
Die bedingten Wahrscheinlichkeiten können nach der klassischen Definition berechnet werden. Man erhält somit das Ergebnis „k/m” (bei m Karten sind noch k Asse enthalten):
- $$p_{\rm 2} =\rm \frac{4}{32}\cdot \frac{3}{31}\cdot\frac{2}{30}\hspace{0.15cm}\underline{ \approx 0.0008}.$$
p2 ist kleiner als p1, da nun das zweite und dritte Ass unwahrscheinlicher sind als zuvor.
(3) Analog zur Teilaufgabe (2) erhält man hier:
- $$p_{\rm 3} = \rm Pr (\overline{\it A_{\rm 1}})\cdot \rm Pr (\overline{\it A_{\rm 2}} \hspace{0.05cm}|\hspace{0.05cm}\overline{\it A_{\rm 1}})\cdot \rm Pr (\overline{\it A_{\rm3}}\hspace{0.05cm}|\hspace{0.05cm}(\overline{\it A_{\rm 1}} \cap \overline{\it A_{\rm 2}} )) =\rm \frac{28}{32}\cdot\frac{27}{31}\cdot\frac{26}{30}\hspace{0.15cm}\underline{\approx 0.6605}.$$
(4) Diese Wahrscheinlichkeit kann man als die Summe dreier Wahrscheinlichkeiten ausdrücken ⇒ $p_{\rm 4} = \rm Pr (\it D_{\rm 1} \cup \it D_{\rm 2} \cup \it D_{\rm 3}) $, da die zugehörigen Ereignisse ${\rm Pr}(D_1)$, ${\rm Pr}(D_2)$ und ${\rm Pr}(D_3)$ disjunkt sind:
- $$\rm Pr (\it D_{\rm 1}) = \rm Pr (\it A_{\rm 1} \cap \overline{ \it A_{\rm 2}} \cap \overline{\it A_{\rm 3}}) = \rm \frac{4}{32}\cdot \frac{28}{31}\cdot \frac{27}{30}=\rm 0.1016,$$
- $$\rm Pr (\it D_{\rm 2}) = \rm Pr ( \overline{\it A_{\rm 1}} \cap \it A_{\rm 2} \cap \overline{\it A_{\rm 3}}) = \rm \frac{28}{32}\cdot \frac{4}{31}\cdot\frac{27}{30}=\rm 0.1016,$$
- $$\rm Pr (\it D_{\rm 3}) = \rm Pr ( \overline{\it A_{\rm 1}} \cap \overline{\it A_{\rm 2}} \cap \it A_{\rm 3}) = \rm \frac{28}{32}\cdot \frac{27}{31}\cdot \frac{4}{30}=\rm 0.1016.$$
Diese Wahrscheinlichkeiten sind alle gleich – warum sollte es auch anders sein? Wenn man bei drei Karten genau ein Ass zieht, ist es genau so wahrscheinlich, ob man dieses als erste, als zweite oder als dritte Karte zieht. Damit erhält man für die Summe p4 = 0.3048.
(5) Definiert man die Ereignisse Ei = „Es werden genau i Asse gezogen” mit den Indizes i = 0, 1, 2, 3, so beschreiben E0, E1, E2 und E3 ein vollständiges System. Deshalb gilt:
- $$p_{\rm 5} = \rm Pr (\it E_{\rm 2}) = \rm 1 - \it p_{\rm 2} -\it p_{\rm 3} - \it p_{\rm 4} \hspace{0.15cm}\underline{= \rm 0.0339}.$$