Digitalsignalübertragung/Trägerfrequenzsysteme mit nichtkohärenter Demodulation: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 11: Zeile 11:
  
 
Diese Tatsache führt zu den '''nichtkohärenten Demodulationsverfahren''' mit dem Vorteil reduzierter Komplexität, allerdings mit erhöhter Verfälschungswahrscheinlichkeit. Bei der Herleitung der Gleichungen stößt man auf zwei Wahrscheinlichkeitsdichtefunktionen, die hier vorneweg angegeben werden:
 
Diese Tatsache führt zu den '''nichtkohärenten Demodulationsverfahren''' mit dem Vorteil reduzierter Komplexität, allerdings mit erhöhter Verfälschungswahrscheinlichkeit. Bei der Herleitung der Gleichungen stößt man auf zwei Wahrscheinlichkeitsdichtefunktionen, die hier vorneweg angegeben werden:
*Die [[Stochastische_Signaltheorie/Weitere_Verteilungen#Rayleighverteilung|Rayleighverteilung]] erhält man für die WDF der Zufallsgröße $y$ mit Realisierung $\eta$, die sich aus den beiden gaußverteilten und statistisch unabhängigen Komponenten $u$ und $v$ (beide mit der gleichen Streuung $\sigma_n$ wie folgt ergibt:
+
 
 +
*Die [[Stochastische_Signaltheorie/Weitere_Verteilungen#Rayleighverteilung|'''Rayleighverteilung''']] erhält man für die WDF der Zufallsgröße $y$ mit Realisierung $\eta$, die sich aus den beiden gaußverteilten und statistisch unabhängigen Komponenten $u$ und $v$ (beide mit der gleichen Streuung $\sigma_n$ wie folgt ergibt:
  
 
::<math>y = \sqrt{u^2 + v^2} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} p_y (\eta) ={\eta}/{\sigma_n^2}
 
::<math>y = \sqrt{u^2 + v^2} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} p_y (\eta) ={\eta}/{\sigma_n^2}
Zeile 17: Zeile 18:
 
  \hspace{0.05cm}.</math>
 
  \hspace{0.05cm}.</math>
  
*Die [[Stochastische_Signaltheorie/Weitere_Verteilungen#Riceverteilung|Riceverteilung]] erhält man unter sonst gleichen Randbedingungen für den Fall, dass bei einer der Komponenten (entweder $u$ oder $v$) noch eine Konstante $C$ addiert wird:
+
*Die [[Stochastische_Signaltheorie/Weitere_Verteilungen#Riceverteilung|'''Riceverteilung''']] erhält man unter gleichen Randbedingungen für den Fall, dass bei einer der Komponenten (entweder $u$ oder $v$) noch eine Konstante $C$ addiert wird:
  
 
::<math>y = \sqrt{(u+C)^2 + v^2} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} p_y (\eta) = {\eta}/{\sigma_n^2}
 
::<math>y = \sqrt{(u+C)^2 + v^2} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} p_y (\eta) = {\eta}/{\sigma_n^2}
Zeile 23: Zeile 24:
 
  \hspace{0.05cm}.</math>
 
  \hspace{0.05cm}.</math>
  
Für die Riceverteilung benötigt man die <i>modifizierte Besselfunktion nullter Ordnung</i>, deren Definition und Reihenentwicklung wie folgt lauten:
+
:Für die Riceverteilung benötigt man die <i>modifizierte Besselfunktion nullter Ordnung</i>, deren Definition und Reihenentwicklung wie folgt lauten:
 
+
[[Datei:P ID2082 Dig T 4 5 S1 version1.png|right|frame|Rayleigh- und Rice-WDF, jeweils für $&sigma;_n = 0.5$|class=fit]]
 
::<math>{\rm I }_0 (x) = \frac{1}{ 2\pi} \cdot  \int_{0}^{2\pi} {\rm e }^{-x \hspace{0.03cm}\cdot \hspace{0.03cm}\cos(\alpha)} \,{\rm d} \alpha \hspace{0.2cm} \approx \hspace{0.2cm}
 
::<math>{\rm I }_0 (x) = \frac{1}{ 2\pi} \cdot  \int_{0}^{2\pi} {\rm e }^{-x \hspace{0.03cm}\cdot \hspace{0.03cm}\cos(\alpha)} \,{\rm d} \alpha \hspace{0.2cm} \approx \hspace{0.2cm}
 
  \sum_{k = 0}^{\infty} \frac{(x/2)^{2k}}{k! \cdot \Gamma (k+1)}
 
  \sum_{k = 0}^{\infty} \frac{(x/2)^{2k}}{k! \cdot \Gamma (k+1)}
 
  \hspace{0.05cm}.</math>
 
  \hspace{0.05cm}.</math>
 
[[Datei:P ID2082 Dig T 4 5 S1 version1.png|center|frame|Rayleigh- und Rice-WDF, jeweils für <i>&sigma;<sub>n</sub></i> = 0.5|class=fit]]
 
  
 
Die Grafik zeigt die Wahrscheinlichkeitsdichtefunktionen von Rayleigh&ndash; und Riceverteilung. Zu dieser Darstellung ist anzumerken:
 
Die Grafik zeigt die Wahrscheinlichkeitsdichtefunktionen von Rayleigh&ndash; und Riceverteilung. Zu dieser Darstellung ist anzumerken:
 
*Die Riceverteilung ist durch die beiden Parameter $C$ und $\sigma_n$ bestimmt. Mit $C = 0$ ist die Rice&ndash;WDF identisch mit der Rayleigh&ndash;WDF.<br>
 
*Die Riceverteilung ist durch die beiden Parameter $C$ und $\sigma_n$ bestimmt. Mit $C = 0$ ist die Rice&ndash;WDF identisch mit der Rayleigh&ndash;WDF.<br>
  
*Die Rayleigh&ndash;WDF mit größerem $\sigma_n$ ist formgleich mit der gezeichneten Kurve $(\sigma_n = 0.5)$, jedoch im Verhältnis der Streuungen breiter und niedriger.<br>
+
*Die Rayleigh&ndash;WDF mit größerem $\sigma_n$ hat die gleiche Form wie für $\sigma_n = 0.5$ dargestellt, ist aber im Verhältnis der Streuungen breiter und niedriger.<br>
  
*$\sigma_n$ gibt die Streuungen der beiden gaußverteilten Zufallsgrößen $u$ und $v$ an (beide haben gleiche Streuung) und nicht die Streuung der rayleighverteilten Zufallsgröße $y$. Für diese gilt vielmehr:
+
*$\sigma_n$ gibt die Streuungen der beiden gaußverteilten Zufallsgrößen $u$ und $v$ an und nicht die Streuung der rayleighverteilten Zufallsgröße $y$.  
 +
*Für diese gilt vielmehr:
  
 
::<math>\sigma_y = \sigma_n  \cdot  \sqrt{2 - {\pi}/{2 }} \hspace{0.2cm} \approx \hspace{0.2cm} 0.655 \cdot \sigma_n   
 
::<math>\sigma_y = \sigma_n  \cdot  \sqrt{2 - {\pi}/{2 }} \hspace{0.2cm} \approx \hspace{0.2cm} 0.655 \cdot \sigma_n   
 
  \hspace{0.05cm}.</math>
 
  \hspace{0.05cm}.</math>
  
*Die Rayleighverteilung ist extrem unsymmetrisch, erkennbar am (relativ) großen Wert für das (normierte) [[Stochastische_Signaltheorie/Erwartungswerte_und_Momente#Einige_h.C3.A4ufig_benutzte_Zentralmomente|Zentralmoment 3. Ordnung]] &nbsp; &rArr; &nbsp; ''Charliersche Schiefe'': &nbsp;  $\mu_3/\sigma_y \approx 0.27$.<br>
+
*Die Rayleighverteilung ist extrem unsymmetrisch, erkennbar am (relativ) großen Wert für das  [[Stochastische_Signaltheorie/Erwartungswerte_und_Momente#Einige_h.C3.A4ufig_benutzte_Zentralmomente|Zentralmoment 3. Ordnung]] &nbsp; &rArr; &nbsp; ''Charliersche Schiefe'':  
 +
:$$\mu_3/\sigma_y \approx 0.27.$$
  
*Die Riceverteilung ist um so symmetrischer, je größer das Verhältnis $C/\sigma_n$ von deterministischer und stochastischer Komponente ist. Für $C/\sigma_n \ge 4$ ist $\mu_3 \approx 0$.<br>
+
*Die Riceverteilung ist um so symmetrischer, je größer das Verhältnis $C/\sigma_n$ ist. Für $C/\sigma_n \ge 4$ ist $\mu_3 \approx 0$.<br>
  
*Weiterhin ist zu erkennen, dass sich die Riceverteilung (mit den Parametern $C$ und $\sigma_n$ immer mehr einer [[Stochastische_Signaltheorie/Gaußverteilte_Zufallsgrößen#Wahrscheinlichkeitsdichte-_und_Verteilungsfunktion|Gaußverteilung]] mit Mittelwert $C$ und Streuung $\sigma_n$ annähert, je größer der Quotient $C/\sigma_n$ ist:
+
*Je größer $C/\sigma_n$ ist, um so mehr nähert sich die Riceverteilung (mit $C$, $\sigma_n$) einer [[Stochastische_Signaltheorie/Gaußverteilte_Zufallsgrößen#Wahrscheinlichkeitsdichte-_und_Verteilungsfunktion|Gaußverteilung]] mit Mittelwert $C$ und Streuung $\sigma_n$ an:
  
 
::<math>p_y (\eta) \approx \frac{1}{\sqrt{2\pi} \cdot \sigma_n}
 
::<math>p_y (\eta) \approx \frac{1}{\sqrt{2\pi} \cdot \sigma_n}
Zeile 54: Zeile 55:
 
== Nichtkohärente Demodulation von On–Off–Keying==
 
== Nichtkohärente Demodulation von On–Off–Keying==
 
<br>
 
<br>
Wir betrachten [[Digitalsignalübertragung/Trägerfrequenzsysteme_mit_kohärenter_Demodulation#On.E2.80.93Off.E2.80.93Keying_.282.E2.80.93ASK.29|On&ndash;Off&ndash;Keying]] (bzw. 2&ndash;ASK) im äquivalenten Tiefpassbereich. Bei kohärenter Demodulation (linke Grafik) ist die Signalraumkonstellation des Empfangssignals gleich der des Sendesignals und besteht aus zwei Punkten. Die Entscheidungsgrenze $G$ liegt in der Mitte zwischen diesen Punkten $\boldsymbol{r}_0$ und $\boldsymbol{r}_1$. Die Pfeile markieren die grobe Richtung von Rauschvektoren, die eventuell zu Übertragungsfehlern führen.<br>
+
Wir betrachten [[Digitalsignalübertragung/Trägerfrequenzsysteme_mit_kohärenter_Demodulation#On.E2.80.93Off.E2.80.93Keying_.282.E2.80.93ASK.29|On&ndash;Off&ndash;Keying]] (bzw. 2&ndash;ASK) im äquivalenten Tiefpassbereich.
 
+
[[Datei:P ID2083 Dig T 4 5 S2a version1.png|right|frame|Kohärente und nichtkohärente Demodulation von On-Off-Keying|class=fit]]
[[Datei:P ID2083 Dig T 4 5 S2a version1.png|center|frame|Kohärente und nichtkohärente Demodulation von On-Off-Keying|class=fit]]
+
*Bei kohärenter Demodulation (linke Grafik) ist die Signalraumkonstellation des Empfangssignals gleich der des Sendesignals und besteht aus zwei Punkten.  
 
+
*Die Entscheidungsgrenze $G$ liegt in der Mitte zwischen diesen Punkten $\boldsymbol{r}_0$ und $\boldsymbol{r}_1$.  
 +
*Die Pfeile markieren die grobe Richtung von Rauschvektoren, die eventuell zu Übertragungsfehlern führen.
 +
<br clear=all>
 
Dagegen gilt bei nichtkohärenter Demodulation:
 
Dagegen gilt bei nichtkohärenter Demodulation:
 
*Der Punkt $\boldsymbol{r}_1 = \boldsymbol{s}_1 = 0$ bleibt weiter erhalten.<br>
 
*Der Punkt $\boldsymbol{r}_1 = \boldsymbol{s}_1 = 0$ bleibt weiter erhalten.<br>
Zeile 63: Zeile 66:
 
*Dagegen kann $\boldsymbol{r}_0 = \boldsymbol{s}_0 \cdot {\rm e}^{\hspace{0.02cm}{\rm j}\hspace{0.03cm}\phi}$ auf jeden Punkt des Kreises um $\boldsymbol{s}_0$ liegen, da $\phi$ unbekannt ist.<br>
 
*Dagegen kann $\boldsymbol{r}_0 = \boldsymbol{s}_0 \cdot {\rm e}^{\hspace{0.02cm}{\rm j}\hspace{0.03cm}\phi}$ auf jeden Punkt des Kreises um $\boldsymbol{s}_0$ liegen, da $\phi$ unbekannt ist.<br>
  
*Der Entscheidungsprozess unter Berücksichtigung des AWGN&ndash;Rauschens ist nun 2&ndash;dimensional zu interpretieren, wie es durch die Pfeile in der rechten Grafik angedeutet ist.<br>
+
*Der Entscheidungsprozess unter Berücksichtigung des AWGN&ndash;Rauschens ist nun 2&ndash;dimensional zu interpretieren, wie durch die Pfeile in der rechten Grafik angedeutet.<br>
  
 
*Das Entscheidungsgebiet $I_1$ ist ein Kreis, dessen Radius $G$ ein optimierbarer Parameter ist. Das Entscheidungsgebiet $I_0$ liegt außerhalb des Kreises.<br><br>
 
*Das Entscheidungsgebiet $I_1$ ist ein Kreis, dessen Radius $G$ ein optimierbarer Parameter ist. Das Entscheidungsgebiet $I_0$ liegt außerhalb des Kreises.<br><br>
  
[[Datei:P ID3147 Dig T 4 5 S2b version1.png|center|frame|Empfänger für nichtkohärente OOK-Demodulation|class=fit]]
+
[[Datei:P ID3147 Dig T 4 5 S2b version1.png|center|frame|Empfänger für nichtkohärente OOK-Demodulation (komplexen Signale sind blau beschriftet)|class=fit]]
  
Damit liegt die Strukur des optimalen OOK&ndash;Empfängers (im äquivalenten Tiefpassbereich) fest. Entsprechend dieser Grafik gilt:  
+
Damit liegt die Strukur des optimalen OOK&ndash;Empfängers (im äquivalenten Tiefpassbereich) fest. Entsprechend dieser zweiten Grafik gilt:  
*Das Eingangssignal $\boldsymbol{r}(t) = \boldsymbol{s}(t) \cdot {\rm e}^{\hspace{0.02cm}{\rm j}\hspace{0.03cm}\phi} + \boldsymbol{n}(t)$ ist aufgrund des Phasenwinkels $\phi$ und wegen des komplexen Rauschterms $\boldsymbol{n}(t)$ im allgemeinen komplex. Alle komplexen Signale sind in der zweiten Grafik blau beschriftet.<br>
+
*Das Eingangssignal $\boldsymbol{r}(t) = \boldsymbol{s}(t) \cdot {\rm e}^{\hspace{0.02cm}{\rm j}\hspace{0.03cm}\phi} + \boldsymbol{n}(t)$ ist aufgrund des Phasenwinkels $\phi$ und wegen des komplexen Rauschterms $\boldsymbol{n}(t)$ im allgemeinen komplex. <br>
  
 
*Erforderlich ist demzufolge nun die Korrelation zwischen dem komplexen Empfangssignal  $\boldsymbol{r}(t)$ und einer komplexen Basisfunktion $\boldsymbol{\xi}_1(t)$.<br>
 
*Erforderlich ist demzufolge nun die Korrelation zwischen dem komplexen Empfangssignal  $\boldsymbol{r}(t)$ und einer komplexen Basisfunktion $\boldsymbol{\xi}_1(t)$.<br>
Zeile 76: Zeile 79:
 
*Das Ergebnis ist der (komplexe) Detektorwert $\boldsymbol{r}$, woraus als reelle Entscheidereingangsgröße der Betrag $y = |\boldsymbol{r}(t)|$ gebildet wird.<br>
 
*Das Ergebnis ist der (komplexe) Detektorwert $\boldsymbol{r}$, woraus als reelle Entscheidereingangsgröße der Betrag $y = |\boldsymbol{r}(t)|$ gebildet wird.<br>
  
*Ist der Entscheidungswert $y \gt G$, so wird als Schätzwert $m_0$ ausgegeben, andernfalls $m_1$. Somit ergibt sich für die Fehlerwahrscheinlichkeit bei gleichwahrscheinlichen Symbolen:
+
*Ist der Entscheidungswert $y \gt G$, so wird als Schätzwert $m_0$ ausgegeben, andernfalls $m_1$. Somit ist die Fehlerwahrscheinlichkeit bei gleichwahrscheinlichen Symbolen:
  
::<math>p_{\rm S} = {\rm Pr}({\cal{E}}) =  {1}/{ 2} \cdot \int_{0}^{G} p_{y|m} (\eta | m_0) \,{\rm d} \eta
+
::<math>p_{\rm S} = {\rm Pr}({\cal{E}}) =  {1}/{ 2} \cdot \int_{0}^{G} p_{y\hspace{0.05cm}\vert \hspace{0.05cm}m} (\eta \hspace{0.05cm}|\hspace{0.05cm} m_0) \,{\rm d} \eta
  + {1}/{ 2} \cdot \int_{G}^{\infty} p_{y|m} (\eta | m_1) \,{\rm d} \eta   
+
  + {1}/{ 2} \cdot \int_{G}^{\infty} p_{y\hspace{0.05cm}\vert \hspace{0.05cm}m} (\eta \hspace{0.05cm}\vert \hspace{0.05cm} m_1) \,{\rm d} \eta   
 
  \hspace{0.05cm}.</math>
 
  \hspace{0.05cm}.</math>
  
*Aufgrund der Rice&ndash;WDF $p_{y\hspace{0.02cm}|\hspace{0.02cm}m} (\eta\hspace{0.02cm}|\hspace{0.02cm}m_0)$ und der Rayleigh&ndash;WDF $p_{y\hspace{0.02cm}|\hspace{0.02cm}m} (\eta\hspace{0.02cm}|\hspace{0.02cm}m_1)$ kann allerdings diese Wahrscheinlichkeit nur numerisch berechnet werden. Die optimale Entscheidungsgrenze $G$ ist vorher als die Lösung der folgenden Gleichung zu bestimmen:
+
*Aufgrund der Rice&ndash;WDF $p_{y\hspace{0.05cm}|\hspace{0.05cm}m} (\eta\hspace{0.05cm}|\hspace{0.05cm}m_0)$ und der Rayleigh&ndash;WDF $p_{y\hspace{0.05cm}|\hspace{0.05cm}m} (\eta\hspace{0.05cm}|\hspace{0.05cm}m_1)$ kann allerdings diese Wahrscheinlichkeit nur numerisch ermittelt werden. Die optimale Entscheidungsgrenze $G$ ist vorher als die Lösung der folgenden Gleichung zu bestimmen:
::<math>p_{y\hspace{0.02cm}|\hspace{0.02cm}m} (G \hspace{0.02cm}|\hspace{0.02cm}m_0) = p_{y\hspace{0.02cm}|\hspace{0.02cm}m} (G \hspace{0.02cm}|\hspace{0.02cm}m_1)
+
::<math>p_{y\hspace{0.05cm}\vert \hspace{0.05cm}m} (G \hspace{0.05cm}|\hspace{0.05cm}m_0) = p_{y\hspace{0.05cm}|\hspace{0.05cm}m} (G \hspace{0.05cm}|\hspace{0.05cm}m_1)
 
  \hspace{0.05cm}.</math>
 
  \hspace{0.05cm}.</math>
  
Zeile 93: Zeile 96:
  
  
Die Fehlerwahrscheinlichkeit für andere Werte von $C$ und $\sigma_n$ sowie die optimale Entscheidungsgrenze $G$ können Sie mit dem Berechnungstool  [[Nichtkohärentes On&ndash;Off&ndash;Keying]] bestimmen.}}
+
Die Fehlerwahrscheinlichkeit für andere Werte von $C$ und $\sigma_n$ sowie die optimale Entscheidungsgrenze $G$ können Sie mit dem Berechnungstool  [[Applets:On-Off-Keying|Nichtkohärentes On&ndash;Off&ndash;Keying]] bestimmen.}}
  
 
== Nichtkohärente Demodulation von binärer FSK (2&ndash;FSK)==
 
== Nichtkohärente Demodulation von binärer FSK (2&ndash;FSK)==
Zeile 110: Zeile 113:
 
[[Datei:P ID2087 Dig T 4 5 S3a version2.png|center|frame|Nichtkohärente Demodulation der binären FSK|class=fit]]
 
[[Datei:P ID2087 Dig T 4 5 S3a version2.png|center|frame|Nichtkohärente Demodulation der binären FSK|class=fit]]
  
Im rauschfreien Fall &nbsp; &#8658; &nbsp  $n(t) \equiv 0$  gilt für die Ausgänge der beiden Korrelatoren:
+
Im rauschfreien Fall &nbsp; &#8658; &nbsp; $n(t) \equiv 0$  gilt für die Ausgänge der beiden Korrelatoren:
  
 
::<math>r_1 = \hspace{0.2cm} <  \hspace{-0.05cm}r(t) \hspace{0.1cm}  \cdot  \hspace{0.1cm} \xi_1(t) \hspace{-0.05cm}> \hspace{0.2cm}= 0\hspace{0.05cm},  \hspace{0.2cm} {\rm falls}\hspace{0.15cm} m = m_1\hspace{0.05cm},</math>
 
::<math>r_1 = \hspace{0.2cm} <  \hspace{-0.05cm}r(t) \hspace{0.1cm}  \cdot  \hspace{0.1cm} \xi_1(t) \hspace{-0.05cm}> \hspace{0.2cm}= 0\hspace{0.05cm},  \hspace{0.2cm} {\rm falls}\hspace{0.15cm} m = m_1\hspace{0.05cm},</math>
Zeile 125: Zeile 128:
  
 
== Fehlerwahrscheinlichkeit bei nichtkohärenter 2&ndash;FSK&ndash;Demodulation==
 
== Fehlerwahrscheinlichkeit bei nichtkohärenter 2&ndash;FSK&ndash;Demodulation==
 
+
<br>
 
Im Folgenden wird die Fehlerwahrscheinlichkeit unter der Annahme berechnet, dass $m = m_0$ gesendet wurde. Unter der weiteren Voraussetzung gleichwahrscheinlicher binärer Nachrichten $m_0$ und $m_1$ ist die absolute Fehlerwahrscheinlichkeit genau so groß: &nbsp; ${\rm Pr}({\cal{E}}) =  {\rm Pr}({\cal{E}}\hspace{0.05cm} | \hspace{0.05cm}m_0)
 
Im Folgenden wird die Fehlerwahrscheinlichkeit unter der Annahme berechnet, dass $m = m_0$ gesendet wurde. Unter der weiteren Voraussetzung gleichwahrscheinlicher binärer Nachrichten $m_0$ und $m_1$ ist die absolute Fehlerwahrscheinlichkeit genau so groß: &nbsp; ${\rm Pr}({\cal{E}}) =  {\rm Pr}({\cal{E}}\hspace{0.05cm} | \hspace{0.05cm}m_0)
 
  \hspace{0.05cm}.$
 
  \hspace{0.05cm}.$
Zeile 135: Zeile 138:
 
  \hspace{0.05cm}.</math>
 
  \hspace{0.05cm}.</math>
  
Hierbei steht $E$ wegen $M = 2$ für die <i>Symbolenergie</i> $(E_{\rm S})$ und die $(E_{\rm S})$ gleichermaßen , und $n_1$ und $n_2$ sind unkorrelierte komplexe Rauschgrößen mit Mittelwert $0$ und Varianz $2 \cdot \sigma_n^2$. Somit lautet die [[Stochastische_Signaltheorie/Zweidimensionale_Zufallsgrößen#Verbundwahrscheinlichkeitsdichtefunktion|Verbundwahrscheinlichkeitsdichtefunktion]]:
+
Hierbei steht $E$ wegen $M = 2$ für die <i>Symbolenergie</i> $(E_{\rm S})$ und die <i>Bitenergie</i>  $(E_{\rm B})$ gleichermaßen, und $n_1$ und $n_2$ sind unkorrelierte komplexe Rauschgrößen mit Mittelwert $0$ und Varianz $2 \cdot \sigma_n^2$. Somit lautet die [[Stochastische_Signaltheorie/Zweidimensionale_Zufallsgrößen#Verbundwahrscheinlichkeitsdichtefunktion|Verbundwahrscheinlichkeitsdichtefunktion]]:
 
::<math>p_{y_1,\hspace{0.03cm} y_2 \hspace{0.03cm}| \hspace{0.03cm}m} ( \eta_1, \eta_2 \hspace{0.05cm}| \hspace{0.05cm}m_0) =  
 
::<math>p_{y_1,\hspace{0.03cm} y_2 \hspace{0.03cm}| \hspace{0.03cm}m} ( \eta_1, \eta_2 \hspace{0.05cm}| \hspace{0.05cm}m_0) =  
 
   p_{y_1 \hspace{0.01cm}| \hspace{0.03cm}m} ( \eta_1 \hspace{0.05cm}| \hspace{0.05cm}m_0) \cdot  
 
   p_{y_1 \hspace{0.01cm}| \hspace{0.03cm}m} ( \eta_1 \hspace{0.05cm}| \hspace{0.05cm}m_0) \cdot  
Zeile 172: Zeile 175:
 
:$$p_{y_1 \hspace{0.01cm}\vert \hspace{0.03cm}m} ( \eta_1 \hspace{0.05cm}\vert \hspace{0.05cm}m_0) = {\eta_1}/{\sigma_n^2} \cdot {\rm e }^{  - ({\eta_1^2 + E})/({2 \sigma_n^2}) }\cdot {\rm I }_0 \left [{\eta_1 \cdot  \sqrt{E} }/{ \sigma_n^2}\right ] \hspace{0.05cm},\hspace{0.5cm}p_{y_\hspace{0.01cm}\vert \hspace{0.03cm}m} ( \eta_2 \hspace{0.05cm}\vert \hspace{0.05cm}m_0) = {\eta_2}/{\sigma_n^2}  \cdot {\rm e }^{  - \eta_2^2 /({2 \sigma_n^2}) } \hspace{0.05cm}.$$
 
:$$p_{y_1 \hspace{0.01cm}\vert \hspace{0.03cm}m} ( \eta_1 \hspace{0.05cm}\vert \hspace{0.05cm}m_0) = {\eta_1}/{\sigma_n^2} \cdot {\rm e }^{  - ({\eta_1^2 + E})/({2 \sigma_n^2}) }\cdot {\rm I }_0 \left [{\eta_1 \cdot  \sqrt{E} }/{ \sigma_n^2}\right ] \hspace{0.05cm},\hspace{0.5cm}p_{y_\hspace{0.01cm}\vert \hspace{0.03cm}m} ( \eta_2 \hspace{0.05cm}\vert \hspace{0.05cm}m_0) = {\eta_2}/{\sigma_n^2}  \cdot {\rm e }^{  - \eta_2^2 /({2 \sigma_n^2}) } \hspace{0.05cm}.$$
  
<b>(1)</b>&nbsp; Das innere Integral gibt die Wahrscheinlichkeit an, dass die rayleighverteilte Zufallsgröße $\eta_2$ größer ist als $\eta_1$ &ndash; siehe Musterlösung zur [[Aufgabe 4.17Z]]:
+
<b>(1)</b> &nbsp; Das innere Integral gibt die Wahrscheinlichkeit an, dass die rayleighverteilte Zufallsgröße $\eta_2$ größer ist als $\eta_1$ &ndash; siehe Musterlösung zur [[Aufgaben:Aufgabe_4.17Z:_Rayleigh-_und_Riceverteilung|Aufgabe 4.17Z]]:
  
 
:$$\int_{\eta_1}^{\infty}  p_{y_2 \hspace{0.03cm}\vert\hspace{0.03cm}m} ( \eta_2 \hspace{0.05cm}\vert \hspace{0.05cm}m_0)\,\,{\rm d} \eta_2 =
 
:$$\int_{\eta_1}^{\infty}  p_{y_2 \hspace{0.03cm}\vert\hspace{0.03cm}m} ( \eta_2 \hspace{0.05cm}\vert \hspace{0.05cm}m_0)\,\,{\rm d} \eta_2 =
Zeile 181: Zeile 184:
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
<b>(2)</b>&nbsp; Mit den (willkürlichen) Substitutionen $C_0^2  = E/4$ und $\sigma_0^2 = \sigma_n^2/2$ erhält man daraus:
+
<b>(2)</b> &nbsp; Mit den (willkürlichen) Substitutionen $C_0^2  = E/4$ und $\sigma_0^2 = \sigma_n^2/2$ erhält man daraus:
  
 
:$${\rm Pr}({\cal{E} }) = \int_{0}^{\infty} \frac{\eta_1}{2 \cdot \sigma_0^2}
 
:$${\rm Pr}({\cal{E} }) = \int_{0}^{\infty} \frac{\eta_1}{2 \cdot \sigma_0^2}
Zeile 190: Zeile 193:
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
<b>(3)</b>&nbsp; Durch Verschieben von Anteilen vor das Integral gelingt es, dass der Integrand wieder eine [[Stochastische_Signaltheorie/Weitere_Verteilungen#Riceverteilung|Riceverteilung]] beschreibt:
+
<b>(3)</b> &nbsp; Durch Verschieben von Anteilen vor das Integral gelingt es, dass der Integrand wieder eine [[Stochastische_Signaltheorie/Weitere_Verteilungen#Riceverteilung|Riceverteilung]] beschreibt:
  
 
::<math>{\rm Pr}({\cal{E} }) = {1}/{2} \cdot {\rm exp } \left [ - \frac{ C_0^2}{2 \sigma_0^2}\right ] \cdot \int\limits_{0}^{\infty} \frac{\eta_1}{ \sigma_0^2}
 
::<math>{\rm Pr}({\cal{E} }) = {1}/{2} \cdot {\rm exp } \left [ - \frac{ C_0^2}{2 \sigma_0^2}\right ] \cdot \int\limits_{0}^{\infty} \frac{\eta_1}{ \sigma_0^2}
Zeile 197: Zeile 200:
 
  \hspace{0.05cm}.</math>
 
  \hspace{0.05cm}.</math>
  
<b>(4)</b>&nbsp; Der Integrand beschreibt nun die Rice&ndash;WDF. Das Integral über das gesamte Definitionsgebiet von $0$ bis $+\infty$ ergibt wie bei jeder WDF den Wert Eins, so dass gilt:
+
<b>(4)</b> &nbsp; Der Integrand beschreibt nun die Rice&ndash;WDF. Das Integral über das gesamte Definitionsgebiet von $0$ bis $+\infty$ ergibt wie bei jeder WDF den Wert Eins, so dass gilt:
  
 
::<math>{\rm Pr}({\cal{E} }) = {1}/{2} \cdot {\rm exp } \left [ - \frac{ C_0^2}{2 \sigma_0^2}\right ]\hspace{0.05cm}.</math>
 
::<math>{\rm Pr}({\cal{E} }) = {1}/{2} \cdot {\rm exp } \left [ - \frac{ C_0^2}{2 \sigma_0^2}\right ]\hspace{0.05cm}.</math>
  
<b>(5)</b>&nbsp; Mit $C_0^2  = E/4$ und $\sigma_0^2 = \sigma_n^2/2$  sowie der allgemein gültigen Beziehung $\sigma_n^2 = N_0$ erhält man schließlich:
+
<b>(5)</b> &nbsp; Mit $C_0^2  = E/4$ und $\sigma_0^2 = \sigma_n^2/2$  sowie der allgemein gültigen Beziehung $\sigma_n^2 = N_0$ erhält man schließlich:
 
:$${\rm Pr}({\cal{E} })  
 
:$${\rm Pr}({\cal{E} })  
 
  = {1}/{2} \cdot {\rm exp } \left [ - \frac{ C_0^2}{2 \sigma_0^2}\right ] = {1}/{2} \cdot {\rm exp } \left [ - \frac{ E_{\rm S}/4}{N_{\rm 0}/2}\right ] \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_{\rm S} = {\rm Pr}({\cal{E} }) = {1}/{2} \cdot {\rm e}^{-E_{\rm S}/(2 N_0)}\hspace{0.05cm}.$$
 
  = {1}/{2} \cdot {\rm exp } \left [ - \frac{ C_0^2}{2 \sigma_0^2}\right ] = {1}/{2} \cdot {\rm exp } \left [ - \frac{ E_{\rm S}/4}{N_{\rm 0}/2}\right ] \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_{\rm S} = {\rm Pr}({\cal{E} }) = {1}/{2} \cdot {\rm e}^{-E_{\rm S}/(2 N_0)}\hspace{0.05cm}.$$
Zeile 213: Zeile 216:
 
*Die nichtkohärente FSK benötigt gegenüber der kohärenten FSK bei $p_{\rm S}= 10^{-5}$ ein um $0.8 \ \rm dB$ größeres $E_{\rm S}/N_0$. Bei $p_{\rm S}= 10^{-3}$ beträgt der Abstand sogar $1.3 \ \rm dB$.<br>
 
*Die nichtkohärente FSK benötigt gegenüber der kohärenten FSK bei $p_{\rm S}= 10^{-5}$ ein um $0.8 \ \rm dB$ größeres $E_{\rm S}/N_0$. Bei $p_{\rm S}= 10^{-3}$ beträgt der Abstand sogar $1.3 \ \rm dB$.<br>
  
*Dagegen beträgt der Abstand zwischen der kohärenten binären FSK von der kohärenten BPSK unabhängig von der Fehlerwahrscheinlichkeit gleich $1.3 \ \rm dB$.
+
*Dagegen beträgt der Abstand zwischen der kohärenten binären FSK von der kohärenten BPSK unabhängig von der Fehlerwahrscheinlichkeit stets $1.3 \ \rm dB$.
 
<br clear =all>}}
 
<br clear =all>}}
  
Zeile 219: Zeile 222:
 
== Nichtkohärente Demodulation von mehrstufiger FSK==
 
== Nichtkohärente Demodulation von mehrstufiger FSK==
 
<br>
 
<br>
[[Datei:P ID2089 Dig T 4 5 S4a version1.png|right|frame|Orthogonale <i>M</i>-stufige FSK für <i>M</i>= 3]]
+
[[Datei:P ID2089 Dig T 4 5 S4a version1.png|right|frame|Orthogonale $M$&ndash;stufige FSK für $M= 3$]]
  
Wir betrachten nun die Nachrichtenmenge $\{m_0, m_1, \text{ ...}, m_{M-1}\}$ und bezeichnen $M$ als Stufenzahl.
+
Wir betrachten nun die Nachrichtenmenge $\{m_0, m_1,\hspace{0.05cm}\text{ ...} \hspace{0.05cm}, m_{M-1}\}$ und bezeichnen $M$ als Stufenzahl.
 
*Voraussetzung für die Anwendung des Modulationsverfahrens <i>&bdquo;Frequency Shift Keying&rdquo;</i> und zugleich eines nichtkohärenten Demodulators ist wie bei der binären FSK ein ganzzahliger Modulationsindex $h$.<br>
 
*Voraussetzung für die Anwendung des Modulationsverfahrens <i>&bdquo;Frequency Shift Keying&rdquo;</i> und zugleich eines nichtkohärenten Demodulators ist wie bei der binären FSK ein ganzzahliger Modulationsindex $h$.<br>
  
*In diesem Fall ist die $M$&ndash;stufige FSK orthogonal und es ergibt sich eine Signalraumkonstellation, wie in der oberen Grafik für den Sonderfall $M = 3$ dargestellt.<br><br>
+
*In diesem Fall ist die $M$&ndash;stufige FSK orthogonal und es ergibt sich eine Signalraumkonstellation, wie in der nebenstehenden  Grafik für den Sonderfall $M = 3$ dargestellt.<br><br>
  
Der nichtkohärente Demodulator ist nachfolgend skizziert. Gegenüber der [[Digitalsignal%C3%BCbertragung/Tr%C3%A4gerfrequenzsysteme_mit_nichtkoh%C3%A4renter_Demodulation#Nichtkoh.C3.A4rente_Demodulation_von_bin.C3.A4rer_FSK_.281.29| Empfängerstruktur für binäre FSK]] unterscheidet sich dieser Empfänger lediglich durch $M$ Zweige anstelle von nur zweien, welche die Vergleichswerte $y_1$, $y_2$, ..., $y_M$ liefern.<br>
+
Der nichtkohärente Demodulator ist nachfolgend skizziert. Gegenüber der [[Digitalsignal%C3%BCbertragung/Tr%C3%A4gerfrequenzsysteme_mit_nichtkoh%C3%A4renter_Demodulation#Nichtkoh.C3.A4rente_Demodulation_von_bin.C3.A4rer_FSK_.281.29| Empfängerstruktur für binäre FSK]] unterscheidet sich dieser Empfänger lediglich durch $M$ Zweige anstelle von nur zweien, welche die Vergleichswerte $y_1$, $y_2$, ... , $y_M$ liefern.<br>
  
[[Datei:P ID2090 Dig T 4 5 S4b version1.png|center|frame|Nichtkohärente Empfängerstruktur für <i>M</i>-stufige FSK|class=fit]]
+
[[Datei:P ID2090 Dig T 4 5 S4b version1.png|center|frame|Nichtkohärente Empfängerstruktur für $M$&ndash;stufige FSK|class=fit]]
  
Zur Berechnung der Fehlerwahrscheinlichkeit gehen wir wieder von der Annahme aus, dass $m_0$ gesendet wurde. Das bedeutet, dass die Entscheidung richtig ist, wenn $y_1$ der größte Detektionsausgangswert ist:
+
Zur Berechnung der Fehlerwahrscheinlichkeit gehen wir wieder von der Annahme aus, dass $m_0$ gesendet wurde. Das bedeutet, dass die Entscheidung richtig ist, wenn der größte Detektionsausgangswert $y_1$ ist:
  
::<math>{\rm Pr}({\cal{C}}) \hspace{-0.1cm}  =  \hspace{-0.1cm} {\rm Pr} \left [ (y_2 < y_1) \cap (y_3 < y_1) \cap ... \cap (y_{M} < y_1)
+
::<math>{\rm Pr}({\cal{C}}) \hspace{-0.1cm}  =  \hspace{-0.1cm} {\rm Pr} \big [ (y_2 < y_1) \cap (y_3 < y_1) \cap ... \cap (y_{M} < y_1)
   \hspace{0.05cm}| \hspace{0.05cm} m = m_0\right ] =  {\rm Pr} \left [ \hspace{0.1cm} \bigcap\limits_{k = 2}^M (y_k < y_1)   
+
   \hspace{0.05cm}| \hspace{0.05cm} m = m_0\big ] =  {\rm Pr} \left [ \hspace{0.1cm} \bigcap\limits_{k = 2}^M (y_k < y_1)   
 
   \hspace{0.05cm}| \hspace{0.05cm}m = m_0\right ]
 
   \hspace{0.05cm}| \hspace{0.05cm}m = m_0\right ]
 
   \hspace{0.01cm}.</math>
 
   \hspace{0.01cm}.</math>
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Fazit:}$&nbsp; Die Fehlerwahrscheinlichkeit der ''$M$&ndash;stufigen FSK ist bei nichtkohärenter Demodulation'' damit ${\rm Pr}({\cal{E} }) = 1 - {\rm Pr}({\cal{C} })$. Nachfolgend wird gezeigt, dass ${\rm Pr}({\cal{C} })$ wie folgt dargestellt werden kann:
+
$\text{Fazit:}$&nbsp;
 +
* Die Fehlerwahrscheinlichkeit der ''$M$&ndash;stufigen FSK ist bei nichtkohärenter Demodulation'' gleich ${\rm Pr}({\cal{E} }) = 1 - {\rm Pr}({\cal{C} })$.  
 +
*Nachfolgend wird gezeigt, dass ${\rm Pr}({\cal{C} })$ wie folgt dargestellt werden kann:
  
 
::<math>{\rm Pr}({\cal{C} }) = \sum_{i = 0}^{M-1} (-1)^i \cdot {M-1 \choose i }  \cdot \frac{1}{i+1} \cdot {\rm exp } \left [ - \frac{i \cdot E_{\rm S} }
 
::<math>{\rm Pr}({\cal{C} }) = \sum_{i = 0}^{M-1} (-1)^i \cdot {M-1 \choose i }  \cdot \frac{1}{i+1} \cdot {\rm exp } \left [ - \frac{i \cdot E_{\rm S} }
Zeile 244: Zeile 249:
 
   \hspace{0.05cm}\hspace{0.5cm} \text{mit}\hspace{0.5cm}  E_{\rm S} = E_{\rm B} \cdot {\rm log_2}(M)\hspace{0.05cm}.</math>
 
   \hspace{0.05cm}\hspace{0.5cm} \text{mit}\hspace{0.5cm}  E_{\rm S} = E_{\rm B} \cdot {\rm log_2}(M)\hspace{0.05cm}.</math>
  
Im Sonderfall $M = 2$ ergibt sich natürlich wieder das im [[Digitalsignalübertragung/Trägerfrequenzsysteme_mit_kohärenter_Demodulation|letzten Abschnitt]] erhaltene Ergebnis:
+
*Im Sonderfall $M = 2$ ergibt sich natürlich wieder das im [[Digitalsignalübertragung/Trägerfrequenzsysteme_mit_kohärenter_Demodulation|letzten Abschnitt]] erhaltene Ergebnis:
  
 
::<math>p_{\rm S} = {\rm Pr}({\cal{E} }) = {1}/{2} \cdot {\rm e}^{-E_{\rm S}/(2 N_0)}
 
::<math>p_{\rm S} = {\rm Pr}({\cal{E} }) = {1}/{2} \cdot {\rm e}^{-E_{\rm S}/(2 N_0)}
Zeile 253: Zeile 258:
 
$\text{Herleitung:}$&nbsp; Das vorweg genommene Ergebnis soll nun in einigen Rechenschritten hergeleitet werden. Hierbei gibt es gewisse Analogien zur Herleitung der [[Digitalsignalübertragung/Trägerfrequenzsysteme_mit_nichtkohärenter_Demodulation#Fehlerwahrscheinlichkeit_bei_nichtkoh.C3.A4renter_2.E2.80.93FSK.E2.80.93Demodulation|BFSK&ndash;Fehlerwahrscheinlichkeit]].<br>
 
$\text{Herleitung:}$&nbsp; Das vorweg genommene Ergebnis soll nun in einigen Rechenschritten hergeleitet werden. Hierbei gibt es gewisse Analogien zur Herleitung der [[Digitalsignalübertragung/Trägerfrequenzsysteme_mit_nichtkohärenter_Demodulation#Fehlerwahrscheinlichkeit_bei_nichtkoh.C3.A4renter_2.E2.80.93FSK.E2.80.93Demodulation|BFSK&ndash;Fehlerwahrscheinlichkeit]].<br>
  
<b>(1)</b>&nbsp; Mit der bedingten Wahrscheinlichkeitsdichte $p_{y_1 \hspace{0.01cm} \vert\hspace{0.03cm}m} ( \eta_1 \hspace{0.05cm} \vert \hspace{0.05cm}m_0)$ erhält man:
+
<b>(1)</b> &nbsp; Mit der bedingten Wahrscheinlichkeitsdichte $p_{y_1 \hspace{0.01cm} \vert\hspace{0.03cm}m} ( \eta_1 \hspace{0.05cm} \vert \hspace{0.05cm}m_0)$ erhält man:
  
 
::<math>{\rm Pr}({\cal{C} }) =  \int_{0}^{\infty} {\rm Pr} \left [ \hspace{0.1cm} \bigcap\limits_{k = 2}^M (y_k < y_1)   
 
::<math>{\rm Pr}({\cal{C} }) =  \int_{0}^{\infty} {\rm Pr} \left [ \hspace{0.1cm} \bigcap\limits_{k = 2}^M (y_k < y_1)   
Zeile 259: Zeile 264:
 
   \hspace{0.05cm}.</math>
 
   \hspace{0.05cm}.</math>
  
<b>(2)</b>&nbsp; Die Entscheidungswerte $y_2$, $y_3$, ... , $y_M$ sind bei gegebenem $y_1$ statistisch unabhängig. Deshalb gilt:
+
<b>(2)</b> &nbsp; Die Entscheidungswerte $y_2$, $y_3$, ... , $y_M$ sind bei gegebenem $y_1$ statistisch unabhängig. Deshalb gilt:
  
::<math>{\rm Pr}({\cal{C} }) =  \int_{0}^{\infty}  \left \{ {\rm Pr} \left [ (y_2 < y_1)   
+
::<math>{\rm Pr}({\cal{C} }) =  \int_{0}^{\infty}  \left \{ {\rm Pr} \big [ (y_2 < y_1)   
   \hspace{0.05cm}\vert \hspace{0.05cm}y_1 = \eta_1, m = m_0\right ] \right \}^{M-1} \cdot p_{y_1 \hspace{0.01cm} \vert\hspace{0.03cm}m} ( \eta_1 \hspace{0.05cm} \vert \hspace{0.05cm}m_0) \,\,{\rm d} \eta_1
+
   \hspace{0.05cm}\vert \hspace{0.05cm}y_1 = \eta_1, m = m_0\big ] \right \}^{M-1} \cdot p_{y_1 \hspace{0.01cm} \vert\hspace{0.03cm}m} ( \eta_1 \hspace{0.05cm} \vert \hspace{0.05cm}m_0) \,\,{\rm d} \eta_1
 
   \hspace{0.05cm}.</math>
 
   \hspace{0.05cm}.</math>
  
<b>(3)</b>&nbsp; Der ausgewählte Wert $y_2$ konditioniert auf $m_0$ besitzt eine Rayleighverteilung mit Parameter $\sigma_n^2$:
+
<b>(3)</b> &nbsp; Der ausgewählte Wert $y_2$ konditioniert auf $m_0$ besitzt eine Rayleighverteilung mit Parameter $\sigma_n^2$:
  
::<math>{\rm Pr} \left [ (y_2 < y_1)   
+
::<math>{\rm Pr} \big [ (y_2 < y_1)   
   \hspace{0.05cm} \vert \hspace{0.05cm}y_1 = \eta_1, m = m_0\right ] \hspace{-0.1cm} = \hspace{-0.1cm} \int_{0}^{\eta_1}  p_{y_2 \hspace{0.01cm} \vert\hspace{0.03cm}m} ( \eta_2 \hspace{0.05cm} \vert \hspace{0.05cm}m_0)\,\,{\rm d} \eta_2=  1 - {\rm exp } \left [ - {\eta_1^2 }/({2 \sigma_n^2})\right ] = 1 - a  \hspace{0.2cm}{\rm(Abk\ddot{u}rzung)}
+
   \hspace{0.05cm} \vert \hspace{0.05cm}y_1 = \eta_1, m = m_0\big ] \hspace{-0.1cm} = \hspace{-0.1cm} \int_{0}^{\eta_1}  p_{y_2 \hspace{0.01cm} \vert\hspace{0.03cm}m} ( \eta_2 \hspace{0.05cm} \vert \hspace{0.05cm}m_0)\,\,{\rm d} \eta_2=  1 - {\rm exp } \big [ - {\eta_1^2 }/({2 \sigma_n^2})\big ] = 1 - a  \hspace{0.2cm}{\rm(Abk\ddot{u}rzung)}
 
   \hspace{0.05cm}.</math>
 
   \hspace{0.05cm}.</math>
  
<b>(4)</b>&nbsp; Gesucht ist nun der Ausdruck $(1 -a)^{M-1}$, für den mit der Abkürzung aus <b>(3)</b> gilt:
+
<b>(4)</b> &nbsp; Gesucht ist nun der Ausdruck $(1 -a)^{M-1}$, für den mit der Abkürzung aus <b>(3)</b> gilt:
  
 
::<math> (1-a)^{M-1} \hspace{-0.1cm}  =  \hspace{-0.1cm} \sum_{i = 0}^{M-1} (-1)^i \cdot {M-1 \choose i } \cdot (-1)^i  \cdot a^i =  \sum_{i = 0}^{M-1} (-1)^i \cdot {M-1 \choose i }  \cdot {\rm exp } \left [ - \frac{i \cdot \eta_1^2 }{2 \sigma_n^2}\right ]
 
::<math> (1-a)^{M-1} \hspace{-0.1cm}  =  \hspace{-0.1cm} \sum_{i = 0}^{M-1} (-1)^i \cdot {M-1 \choose i } \cdot (-1)^i  \cdot a^i =  \sum_{i = 0}^{M-1} (-1)^i \cdot {M-1 \choose i }  \cdot {\rm exp } \left [ - \frac{i \cdot \eta_1^2 }{2 \sigma_n^2}\right ]
 
   \hspace{0.05cm}.</math>
 
   \hspace{0.05cm}.</math>
  
<b>(5)</b>&nbsp; Weiterhin besitzt $y_1$ konditioniert auf $m=M_1$ eine [[Digitalsignalübertragung/Trägerfrequenzsysteme_mit_nichtkohärenter_Demodulation#Rayleigh.E2.80.93_und_Riceverteilung|Riceverteilung]]. Die Wahrscheinlichkeit für eine korrekte Entscheidung lässt sich somit in folgende Form bringen:
+
<b>(5)</b> &nbsp; $y_1$ besitzt konditioniert auf $m=M_1$ eine [[Digitalsignalübertragung/Trägerfrequenzsysteme_mit_nichtkohärenter_Demodulation#Rayleigh.E2.80.93_und_Riceverteilung|Riceverteilung]]. Die Wahrscheinlichkeit für eine korrekte Entscheidung lässt sich somit in folgende Form bringen:
  
 
::<math>{\rm Pr}({\cal{C} }) \hspace{-0.1cm}  =  \hspace{-0.1cm} \sum_{i = 0}^{M-1} (-1)^i \cdot {M-1 \choose i }  \cdot \int_{0}^{\infty} {\rm exp } \left [ - \frac{i \cdot \eta_1^2 }{2 \sigma_n^2}\right ] \cdot \frac{\eta_1}{ \sigma_n^2}\cdot   
 
::<math>{\rm Pr}({\cal{C} }) \hspace{-0.1cm}  =  \hspace{-0.1cm} \sum_{i = 0}^{M-1} (-1)^i \cdot {M-1 \choose i }  \cdot \int_{0}^{\infty} {\rm exp } \left [ - \frac{i \cdot \eta_1^2 }{2 \sigma_n^2}\right ] \cdot \frac{\eta_1}{ \sigma_n^2}\cdot   
Zeile 283: Zeile 288:
 
   \hspace{0.05cm}.</math>
 
   \hspace{0.05cm}.</math>
  
<b>(6)</b>&nbsp; Durch Substitutionen gelingt es, den Integranden entsprechend der Riceverteilung zu gestalten. Da sich jede Wahrscheinlichkeitsdichte zu Eins integriert, erhält man:
+
<b>(6)</b> &nbsp; Durch Substitutionen gelingt es, den Integranden gemäß der Riceverteilung zu gestalten. Da sich jede Wahrscheinlichkeitsdichte zu Eins integriert, erhält man:
  
 
::<math>{\rm Pr}({\cal{C} }) = \sum_{i = 0}^{M-1} (-1)^i \cdot {M-1 \choose i }  \cdot \frac{1}{i+1} \cdot {\rm exp } \left [ - \frac{i \cdot E_{\rm S} }
 
::<math>{\rm Pr}({\cal{C} }) = \sum_{i = 0}^{M-1} (-1)^i \cdot {M-1 \choose i }  \cdot \frac{1}{i+1} \cdot {\rm exp } \left [ - \frac{i \cdot E_{\rm S} }
Zeile 289: Zeile 294:
 
   \hspace{0.05cm}\hspace{0.5cm} \text{mit}\hspace{0.5cm}  E_{\rm S} = E_{\rm B} \cdot {\rm log_2}(M)\hspace{0.05cm}.</math>
 
   \hspace{0.05cm}\hspace{0.5cm} \text{mit}\hspace{0.5cm}  E_{\rm S} = E_{\rm B} \cdot {\rm log_2}(M)\hspace{0.05cm}.</math>
  
<b>(7)</b>&nbsp; Der Sonderfall $M = 2$ führt zum genau gleichen Ergebnis, wie für die binäre FSK berechnet:
+
<b>(7)</b> &nbsp; Der Sonderfall $M = 2$ führt zum genau gleichen Ergebnis, wie für die binäre FSK berechnet:
  
 
::<math>{\rm Pr}({\cal{C} }) = (-1)^0 \cdot {2-1 \choose 0 }  \cdot \frac{1}{0+1} \cdot {\rm exp } \left [ - \frac{0 \cdot E_{\rm S} }
 
::<math>{\rm Pr}({\cal{C} }) = (-1)^0 \cdot {2-1 \choose 0 }  \cdot \frac{1}{0+1} \cdot {\rm exp } \left [ - \frac{0 \cdot E_{\rm S} }

Version vom 14. Juni 2018, 13:45 Uhr

Rayleigh– und Riceverteilung


Die für eine kohärente Demodulation erforderliche Schätzung des Phasenwinkels aus dem ankommenden Signal ist bei vielen Anwendungen nicht oder nur eingeschränkt möglich. So führt die Bewegung eines Mobilteilnehmers mit hoher Geschwindigkeit zu sehr schnellen zeitlichen Änderungen des Phasenwinkels $\phi$, was dessen ausreichend genaue Bestimmung erschwert oder gar verhindert.

Diese Tatsache führt zu den nichtkohärenten Demodulationsverfahren mit dem Vorteil reduzierter Komplexität, allerdings mit erhöhter Verfälschungswahrscheinlichkeit. Bei der Herleitung der Gleichungen stößt man auf zwei Wahrscheinlichkeitsdichtefunktionen, die hier vorneweg angegeben werden:

  • Die Rayleighverteilung erhält man für die WDF der Zufallsgröße $y$ mit Realisierung $\eta$, die sich aus den beiden gaußverteilten und statistisch unabhängigen Komponenten $u$ und $v$ (beide mit der gleichen Streuung $\sigma_n$ wie folgt ergibt:
\[y = \sqrt{u^2 + v^2} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} p_y (\eta) ={\eta}/{\sigma_n^2} \cdot {\rm exp } \left [ - {\eta^2}/{ (2\sigma_n^2)}\right ] \hspace{0.05cm}.\]
  • Die Riceverteilung erhält man unter gleichen Randbedingungen für den Fall, dass bei einer der Komponenten (entweder $u$ oder $v$) noch eine Konstante $C$ addiert wird:
\[y = \sqrt{(u+C)^2 + v^2} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} p_y (\eta) = {\eta}/{\sigma_n^2} \cdot {\rm exp } \left [ - ({\eta^2 + C^2})/(2 \sigma_n^2) \right ] \cdot {\rm I }_0 \left [{\eta \cdot C}/{ \sigma_n^2}\right ] \hspace{0.05cm}.\]
Für die Riceverteilung benötigt man die modifizierte Besselfunktion nullter Ordnung, deren Definition und Reihenentwicklung wie folgt lauten:
Rayleigh- und Rice-WDF, jeweils für $σ_n = 0.5$
\[{\rm I }_0 (x) = \frac{1}{ 2\pi} \cdot \int_{0}^{2\pi} {\rm e }^{-x \hspace{0.03cm}\cdot \hspace{0.03cm}\cos(\alpha)} \,{\rm d} \alpha \hspace{0.2cm} \approx \hspace{0.2cm} \sum_{k = 0}^{\infty} \frac{(x/2)^{2k}}{k! \cdot \Gamma (k+1)} \hspace{0.05cm}.\]

Die Grafik zeigt die Wahrscheinlichkeitsdichtefunktionen von Rayleigh– und Riceverteilung. Zu dieser Darstellung ist anzumerken:

  • Die Riceverteilung ist durch die beiden Parameter $C$ und $\sigma_n$ bestimmt. Mit $C = 0$ ist die Rice–WDF identisch mit der Rayleigh–WDF.
  • Die Rayleigh–WDF mit größerem $\sigma_n$ hat die gleiche Form wie für $\sigma_n = 0.5$ dargestellt, ist aber im Verhältnis der Streuungen breiter und niedriger.
  • $\sigma_n$ gibt die Streuungen der beiden gaußverteilten Zufallsgrößen $u$ und $v$ an und nicht die Streuung der rayleighverteilten Zufallsgröße $y$.
  • Für diese gilt vielmehr:
\[\sigma_y = \sigma_n \cdot \sqrt{2 - {\pi}/{2 }} \hspace{0.2cm} \approx \hspace{0.2cm} 0.655 \cdot \sigma_n \hspace{0.05cm}.\]
  • Die Rayleighverteilung ist extrem unsymmetrisch, erkennbar am (relativ) großen Wert für das Zentralmoment 3. Ordnung   ⇒   Charliersche Schiefe:
$$\mu_3/\sigma_y \approx 0.27.$$
  • Die Riceverteilung ist um so symmetrischer, je größer das Verhältnis $C/\sigma_n$ ist. Für $C/\sigma_n \ge 4$ ist $\mu_3 \approx 0$.
  • Je größer $C/\sigma_n$ ist, um so mehr nähert sich die Riceverteilung (mit $C$, $\sigma_n$) einer Gaußverteilung mit Mittelwert $C$ und Streuung $\sigma_n$ an:
\[p_y (\eta) \approx \frac{1}{\sqrt{2\pi} \cdot \sigma_n} \cdot {\rm exp } \left [ - \frac{(\eta - C)^2}{2 \sigma_n^2}\right ] \hspace{0.3cm} \Rightarrow \hspace{0.3cm} m_y = C\hspace{0.05cm},\hspace{0.2cm}\sigma_y = \sigma_n \hspace{0.05cm}.\]

Nichtkohärente Demodulation von On–Off–Keying


Wir betrachten On–Off–Keying (bzw. 2–ASK) im äquivalenten Tiefpassbereich.

Kohärente und nichtkohärente Demodulation von On-Off-Keying
  • Bei kohärenter Demodulation (linke Grafik) ist die Signalraumkonstellation des Empfangssignals gleich der des Sendesignals und besteht aus zwei Punkten.
  • Die Entscheidungsgrenze $G$ liegt in der Mitte zwischen diesen Punkten $\boldsymbol{r}_0$ und $\boldsymbol{r}_1$.
  • Die Pfeile markieren die grobe Richtung von Rauschvektoren, die eventuell zu Übertragungsfehlern führen.


Dagegen gilt bei nichtkohärenter Demodulation:

  • Der Punkt $\boldsymbol{r}_1 = \boldsymbol{s}_1 = 0$ bleibt weiter erhalten.
  • Dagegen kann $\boldsymbol{r}_0 = \boldsymbol{s}_0 \cdot {\rm e}^{\hspace{0.02cm}{\rm j}\hspace{0.03cm}\phi}$ auf jeden Punkt des Kreises um $\boldsymbol{s}_0$ liegen, da $\phi$ unbekannt ist.
  • Der Entscheidungsprozess unter Berücksichtigung des AWGN–Rauschens ist nun 2–dimensional zu interpretieren, wie durch die Pfeile in der rechten Grafik angedeutet.
  • Das Entscheidungsgebiet $I_1$ ist ein Kreis, dessen Radius $G$ ein optimierbarer Parameter ist. Das Entscheidungsgebiet $I_0$ liegt außerhalb des Kreises.

Empfänger für nichtkohärente OOK-Demodulation (komplexen Signale sind blau beschriftet)

Damit liegt die Strukur des optimalen OOK–Empfängers (im äquivalenten Tiefpassbereich) fest. Entsprechend dieser zweiten Grafik gilt:

  • Das Eingangssignal $\boldsymbol{r}(t) = \boldsymbol{s}(t) \cdot {\rm e}^{\hspace{0.02cm}{\rm j}\hspace{0.03cm}\phi} + \boldsymbol{n}(t)$ ist aufgrund des Phasenwinkels $\phi$ und wegen des komplexen Rauschterms $\boldsymbol{n}(t)$ im allgemeinen komplex.
  • Erforderlich ist demzufolge nun die Korrelation zwischen dem komplexen Empfangssignal $\boldsymbol{r}(t)$ und einer komplexen Basisfunktion $\boldsymbol{\xi}_1(t)$.
  • Das Ergebnis ist der (komplexe) Detektorwert $\boldsymbol{r}$, woraus als reelle Entscheidereingangsgröße der Betrag $y = |\boldsymbol{r}(t)|$ gebildet wird.
  • Ist der Entscheidungswert $y \gt G$, so wird als Schätzwert $m_0$ ausgegeben, andernfalls $m_1$. Somit ist die Fehlerwahrscheinlichkeit bei gleichwahrscheinlichen Symbolen:
\[p_{\rm S} = {\rm Pr}({\cal{E}}) = {1}/{ 2} \cdot \int_{0}^{G} p_{y\hspace{0.05cm}\vert \hspace{0.05cm}m} (\eta \hspace{0.05cm}|\hspace{0.05cm} m_0) \,{\rm d} \eta + {1}/{ 2} \cdot \int_{G}^{\infty} p_{y\hspace{0.05cm}\vert \hspace{0.05cm}m} (\eta \hspace{0.05cm}\vert \hspace{0.05cm} m_1) \,{\rm d} \eta \hspace{0.05cm}.\]
  • Aufgrund der Rice–WDF $p_{y\hspace{0.05cm}|\hspace{0.05cm}m} (\eta\hspace{0.05cm}|\hspace{0.05cm}m_0)$ und der Rayleigh–WDF $p_{y\hspace{0.05cm}|\hspace{0.05cm}m} (\eta\hspace{0.05cm}|\hspace{0.05cm}m_1)$ kann allerdings diese Wahrscheinlichkeit nur numerisch ermittelt werden. Die optimale Entscheidungsgrenze $G$ ist vorher als die Lösung der folgenden Gleichung zu bestimmen:
\[p_{y\hspace{0.05cm}\vert \hspace{0.05cm}m} (G \hspace{0.05cm}|\hspace{0.05cm}m_0) = p_{y\hspace{0.05cm}|\hspace{0.05cm}m} (G \hspace{0.05cm}|\hspace{0.05cm}m_1) \hspace{0.05cm}.\]
Dichtefunktionen für „OOK, nichtkohärent”

$\text{Beispiel 1:}$  Die Grafik zeigt das Ergebnis dieser Gleichung für $\sigma_n = 0.5$ und $C = 2$, wobei die (rote) Rice–WDF durch eine Gauß–WDF mit Mittelwert $C$ und Streuung $\sigma_n$ approximiert ist. Man erkennt daraus:

  • Die optimale Entscheidungsgrenze (hier: $G \approx 1.25$) ergibt sich aus dem Schnittpunkt der beiden Kurven.
  • Die Symbolfehlerwahrscheinlichkeit $p_{\rm S}$ ist die Summe der beiden farblich hinterlegten Flächen. Im Beispiel ergibt sich $p_{\rm S} \approx 5\%$.


Die Fehlerwahrscheinlichkeit für andere Werte von $C$ und $\sigma_n$ sowie die optimale Entscheidungsgrenze $G$ können Sie mit dem Berechnungstool Nichtkohärentes On–Off–Keying bestimmen.

Nichtkohärente Demodulation von binärer FSK (2–FSK)


Wie schon im letzten Kapitel gezeigt, lässt sich binäres Frequency Shift Keying (2–FSK) im äquivalenten Tiefpassbereich durch die Basisfunktionen

\[\xi_1(t) = \sqrt{1/T} \cdot {\rm e}^{\hspace{0.05cm}+{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm} \pi \hspace{0.03cm}\cdot \hspace{0.03cm} h \hspace{0.03cm}\cdot \hspace{0.03cm}t/T}\hspace{0.05cm},\hspace{0.2cm} 0 \le t \le T\hspace{0.05cm},\]
\[ \xi_2(t) = \sqrt{1/T} \cdot {\rm e}^{\hspace{0.05cm}-{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm} \pi \hspace{0.03cm}\cdot \hspace{0.03cm} h \hspace{0.03cm}\cdot \hspace{0.03cm}t/T}\hspace{0.05cm},\hspace{0.2cm} 0 \le t \le T \hspace{0.05cm}\]

darstellen. Um Orthogonalität zwischen diesen beiden komplexen Basisfunktionen zu erreichen, muss der Modulationsindex $h$ ganzzahlig gewählt werden:

\[< \hspace{-0.05cm}\xi_1(t) \hspace{0.1cm} \cdot \hspace{0.1cm} \xi_2(t) \hspace{-0.05cm}> \hspace{0.2cm}= 0 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} h = 2 \cdot \Delta f_{\rm A} \cdot T\hspace{0.05cm}= 1, 2, 3, \text{...}\]

Die Grafik zeigt die Struktur zur nichtkohärenten orthogonalen Demodulation der binären FSK.

Nichtkohärente Demodulation der binären FSK

Im rauschfreien Fall   ⇒   $n(t) \equiv 0$ gilt für die Ausgänge der beiden Korrelatoren:

\[r_1 = \hspace{0.2cm} < \hspace{-0.05cm}r(t) \hspace{0.1cm} \cdot \hspace{0.1cm} \xi_1(t) \hspace{-0.05cm}> \hspace{0.2cm}= 0\hspace{0.05cm}, \hspace{0.2cm} {\rm falls}\hspace{0.15cm} m = m_1\hspace{0.05cm},\]
\[ r_2 = \hspace{0.2cm} < \hspace{-0.05cm}r(t) \hspace{0.1cm} \cdot \hspace{0.1cm} \xi_2(t) \hspace{-0.05cm}> \hspace{0.2cm}= 0\hspace{0.05cm}, \hspace{0.2cm} {\rm falls}\hspace{0.15cm} m = m_0\hspace{0.05cm}.\]

Nach jeweiliger Betragsbildung   ⇒   $y_1 = |r_1|, \ y_2 = |r_2|$ ist dann folgende Entscheidungsregel anwendbar:

\[\hat{m} = \left\{ \begin{array}{c} m_0 \\ m_1 \end{array} \right.\quad \begin{array}{*{1}c} {\rm falls}\hspace{0.15cm} y_1 > y_2 \hspace{0.05cm}, \\ {\rm falls}\hspace{0.15cm} y_1 < y_2 \hspace{0.05cm}.\\ \end{array}\]

Zur einfacheren Realisierung des Entscheiders kann auch die Differenz $y_1 - y_2$ mit der Entscheidungsgrenze $G = 0$ ausgewertet werden.

Fehlerwahrscheinlichkeit bei nichtkohärenter 2–FSK–Demodulation


Im Folgenden wird die Fehlerwahrscheinlichkeit unter der Annahme berechnet, dass $m = m_0$ gesendet wurde. Unter der weiteren Voraussetzung gleichwahrscheinlicher binärer Nachrichten $m_0$ und $m_1$ ist die absolute Fehlerwahrscheinlichkeit genau so groß:   ${\rm Pr}({\cal{E}}) = {\rm Pr}({\cal{E}}\hspace{0.05cm} | \hspace{0.05cm}m_0) \hspace{0.05cm}.$

Mit $m = m_0$ ergeben sich für die komplexen Korrelationsausgangswerte $r_i$ und deren Beträge $y_i$:

\[r_1 = \sqrt{E} \cdot {\rm e}^{{\rm j}\phi} + n_1\hspace{0.3cm} \Rightarrow \hspace{0.3cm}y_1 = |r_1|\hspace{0.15cm}{\rm ist}\hspace{0.15cm}{\rm riceverteilt} \hspace{0.05cm},\]
\[ r_2 = n_2\hspace{0.3cm} \Rightarrow \hspace{0.3cm}y_2 = |r_2|\hspace{0.15cm}{\rm ist}\hspace{0.15cm}{\rm rayleighverteilt} \hspace{0.05cm}.\]

Hierbei steht $E$ wegen $M = 2$ für die Symbolenergie $(E_{\rm S})$ und die Bitenergie $(E_{\rm B})$ gleichermaßen, und $n_1$ und $n_2$ sind unkorrelierte komplexe Rauschgrößen mit Mittelwert $0$ und Varianz $2 \cdot \sigma_n^2$. Somit lautet die Verbundwahrscheinlichkeitsdichtefunktion:

\[p_{y_1,\hspace{0.03cm} y_2 \hspace{0.03cm}| \hspace{0.03cm}m} ( \eta_1, \eta_2 \hspace{0.05cm}| \hspace{0.05cm}m_0) = p_{y_1 \hspace{0.01cm}| \hspace{0.03cm}m} ( \eta_1 \hspace{0.05cm}| \hspace{0.05cm}m_0) \cdot p_{y_2 \hspace{0.03cm}| \hspace{0.03cm}m} ( \eta_2 \hspace{0.05cm}| \hspace{0.05cm}m_0) \hspace{0.05cm},\]
\[\Rightarrow \hspace{0.5cm} p_{y_1 \hspace{0.01cm}| \hspace{0.03cm}m} ( \eta_1 \hspace{0.05cm}| \hspace{0.05cm}m_0) = {\eta_1}/{\sigma_n^2} \cdot {\rm e }^{ - ({\eta_1^2 + E})/({2 \sigma_n^2}) }\cdot {\rm I }_0 \left [{\eta_1 \cdot \sqrt{E}}/{ \sigma_n^2}\right ] \hspace{0.05cm}, \hspace{0.5cm} p_{y_2 \hspace{0.01cm}| \hspace{0.03cm}m} ( \eta_2 \hspace{0.05cm}| \hspace{0.05cm}m_0) = {\eta_2}/{\sigma_n^2} \cdot {\rm e }^{ - \eta_2^2 /({2 \sigma_n^2}) } \hspace{0.05cm}.\]

Die Fehlerwahrscheinlichkeit ergibt sich allgemein wie folgt:

\[{\rm Pr}({\cal{E}}) = \int_{0}^{\infty} \int_{\eta_1}^{\infty} p_{y_1,\hspace{0.03cm} y_2 \hspace{0.03cm}| \hspace{0.03cm}m} ( \eta_1, \eta_2 \hspace{0.05cm}| \hspace{0.05cm}m_0) \,\,{\rm d} \eta_2\,\,{\rm d} \eta_1 = \int_{0}^{\infty} p_{y_1 \hspace{0.01cm}| \hspace{0.03cm}m} ( \eta_1 \hspace{0.05cm}| \hspace{0.05cm}m_0) \cdot \int_{\eta_1}^{\infty} p_{y_2 \hspace{0.03cm}| \hspace{0.03cm}m} ( \eta_2 \hspace{0.05cm}| \hspace{0.05cm}m_0)\,\,{\rm d} \eta_2\,\,{\rm d} \eta_1 \hspace{0.05cm}.\]

$\text{Fazit:}$  Nach einigen mathematischen Umformungen erhält man für die Fehlerwahrscheinlichkeit bei nichtkohärenter Demodulation der binären FSK das überraschend einfache Ergebnis

\[p_{\rm S} = {\rm Pr}({\cal{E} }) = {1}/{2} \cdot {\rm e}^{-E_{\rm S}/(2 N_0)} \hspace{0.05cm}.\]

Zum Vergleich sei nochmals das Ergebnis für die kohärente Demodulation angegeben:

\[p_{\rm S} = {\rm Pr}({\cal{E} }) = {\rm Q}(\sqrt{ E_{\rm S}/N_0}) \hspace{0.05cm}.\]


$\text{Herleitung:}$  Das vorweg genommene Ergebnis soll nun in einigen Rechenschritten hergeleitet werden. Wir gehen dabei von den folgenden Gleichungen aus:

$${\rm Pr}({\cal{E} }) = \int_{0}^{\infty} p_{y_1 \hspace{0.01cm} \vert\hspace{0.03cm}m} ( \eta_1 \hspace{0.05cm} \vert \hspace{0.05cm}m_0) \cdot \int_{\eta_1}^{\infty} p_{y_2 \hspace{0.03cm}\vert \hspace{0.03cm}m} ( \eta_2 \hspace{0.05cm}\vert \hspace{0.05cm}m_0)\,\,{\rm d} \eta_2\,\,{\rm d} \eta_1 \hspace{0.05cm},\hspace{0.5cm}\text{mit}$$
$$p_{y_1 \hspace{0.01cm}\vert \hspace{0.03cm}m} ( \eta_1 \hspace{0.05cm}\vert \hspace{0.05cm}m_0) = {\eta_1}/{\sigma_n^2} \cdot {\rm e }^{ - ({\eta_1^2 + E})/({2 \sigma_n^2}) }\cdot {\rm I }_0 \left [{\eta_1 \cdot \sqrt{E} }/{ \sigma_n^2}\right ] \hspace{0.05cm},\hspace{0.5cm}p_{y_\hspace{0.01cm}\vert \hspace{0.03cm}m} ( \eta_2 \hspace{0.05cm}\vert \hspace{0.05cm}m_0) = {\eta_2}/{\sigma_n^2} \cdot {\rm e }^{ - \eta_2^2 /({2 \sigma_n^2}) } \hspace{0.05cm}.$$

(1)   Das innere Integral gibt die Wahrscheinlichkeit an, dass die rayleighverteilte Zufallsgröße $\eta_2$ größer ist als $\eta_1$ – siehe Musterlösung zur Aufgabe 4.17Z:

$$\int_{\eta_1}^{\infty} p_{y_2 \hspace{0.03cm}\vert\hspace{0.03cm}m} ( \eta_2 \hspace{0.05cm}\vert \hspace{0.05cm}m_0)\,\,{\rm d} \eta_2 = {\rm e }^{ - \eta_1^2 /({2 \sigma_n^2}) } \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm Pr}({\cal{E} }) = \int_{0}^{\infty}{\eta_1}/{\sigma_n^2} \cdot {\rm e }^{ - ({2\eta_1^2 + E})/({2 \sigma_n^2}) }\cdot {\rm I }_0 \left [ {\eta_1 \cdot \sqrt{E} }/{ \sigma_n^2}\right ]\,\,{\rm d} \eta_1 \hspace{0.05cm}.$$

(2)   Mit den (willkürlichen) Substitutionen $C_0^2 = E/4$ und $\sigma_0^2 = \sigma_n^2/2$ erhält man daraus:

$${\rm Pr}({\cal{E} }) = \int_{0}^{\infty} \frac{\eta_1}{2 \cdot \sigma_0^2} \cdot {\rm exp } \left [ - \frac{2 \eta_1^2 + 4 C_0^2}{4 \sigma_0^2}\right ] \cdot {\rm I }_0 \left [ \frac{\eta_1 \cdot 2C_0}{ 2 \sigma_0^2}\right ]\,\,{\rm d} \eta_1 = \int_{0}^{\infty} \frac{\eta_1}{2 \cdot \sigma_0^2} \cdot {\rm exp } \left [ - \frac{\eta_1^2 + 2 C_0^2}{2 \sigma_0^2}\right ] \cdot {\rm I }_0 \left [ \frac{\eta_1 \cdot C_0}{ \sigma_0^2}\right ]\,\,{\rm d} \eta_1 \hspace{0.05cm}.$$

(3)   Durch Verschieben von Anteilen vor das Integral gelingt es, dass der Integrand wieder eine Riceverteilung beschreibt:

\[{\rm Pr}({\cal{E} }) = {1}/{2} \cdot {\rm exp } \left [ - \frac{ C_0^2}{2 \sigma_0^2}\right ] \cdot \int\limits_{0}^{\infty} \frac{\eta_1}{ \sigma_0^2} \cdot {\rm exp } \left [ - \frac{\eta_1^2 + C_0^2}{2 \sigma_0^2}\right ] \cdot {\rm I }_0 \left [ \frac{\eta_1 \cdot C_0}{ \sigma_0^2}\right ]\,\,{\rm d} \eta_1 \hspace{0.05cm}.\]

(4)   Der Integrand beschreibt nun die Rice–WDF. Das Integral über das gesamte Definitionsgebiet von $0$ bis $+\infty$ ergibt wie bei jeder WDF den Wert Eins, so dass gilt:

\[{\rm Pr}({\cal{E} }) = {1}/{2} \cdot {\rm exp } \left [ - \frac{ C_0^2}{2 \sigma_0^2}\right ]\hspace{0.05cm}.\]

(5)   Mit $C_0^2 = E/4$ und $\sigma_0^2 = \sigma_n^2/2$ sowie der allgemein gültigen Beziehung $\sigma_n^2 = N_0$ erhält man schließlich:

$${\rm Pr}({\cal{E} }) = {1}/{2} \cdot {\rm exp } \left [ - \frac{ C_0^2}{2 \sigma_0^2}\right ] = {1}/{2} \cdot {\rm exp } \left [ - \frac{ E_{\rm S}/4}{N_{\rm 0}/2}\right ] \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_{\rm S} = {\rm Pr}({\cal{E} }) = {1}/{2} \cdot {\rm e}^{-E_{\rm S}/(2 N_0)}\hspace{0.05cm}.$$

q.e.d.         $E_{\rm S}$ gibt hierbei mittlere Signalenergie pro Symbol an, die bei FSK gleich der Normierungsenergie $E$ ist.


FSK-Fehlerwahrscheinlichkeit bei kohärenter und nichtkohärenter Demodulation

$\text{Beispiel 2:}$  Die Grafik stellt die Fehlerwahrscheinlichkeitskurven beider Demodulationsverfahren in Abhängigkeit des AWGN–Qotienten $E_{\rm S}/N_0$ vergleichend gegenüber.

Man erkennt:

  • Die nichtkohärente FSK benötigt gegenüber der kohärenten FSK bei $p_{\rm S}= 10^{-5}$ ein um $0.8 \ \rm dB$ größeres $E_{\rm S}/N_0$. Bei $p_{\rm S}= 10^{-3}$ beträgt der Abstand sogar $1.3 \ \rm dB$.
  • Dagegen beträgt der Abstand zwischen der kohärenten binären FSK von der kohärenten BPSK unabhängig von der Fehlerwahrscheinlichkeit stets $1.3 \ \rm dB$.



Nichtkohärente Demodulation von mehrstufiger FSK


Orthogonale $M$–stufige FSK für $M= 3$

Wir betrachten nun die Nachrichtenmenge $\{m_0, m_1,\hspace{0.05cm}\text{ ...} \hspace{0.05cm}, m_{M-1}\}$ und bezeichnen $M$ als Stufenzahl.

  • Voraussetzung für die Anwendung des Modulationsverfahrens „Frequency Shift Keying” und zugleich eines nichtkohärenten Demodulators ist wie bei der binären FSK ein ganzzahliger Modulationsindex $h$.
  • In diesem Fall ist die $M$–stufige FSK orthogonal und es ergibt sich eine Signalraumkonstellation, wie in der nebenstehenden Grafik für den Sonderfall $M = 3$ dargestellt.

Der nichtkohärente Demodulator ist nachfolgend skizziert. Gegenüber der Empfängerstruktur für binäre FSK unterscheidet sich dieser Empfänger lediglich durch $M$ Zweige anstelle von nur zweien, welche die Vergleichswerte $y_1$, $y_2$, ... , $y_M$ liefern.

Nichtkohärente Empfängerstruktur für $M$–stufige FSK

Zur Berechnung der Fehlerwahrscheinlichkeit gehen wir wieder von der Annahme aus, dass $m_0$ gesendet wurde. Das bedeutet, dass die Entscheidung richtig ist, wenn der größte Detektionsausgangswert $y_1$ ist:

\[{\rm Pr}({\cal{C}}) \hspace{-0.1cm} = \hspace{-0.1cm} {\rm Pr} \big [ (y_2 < y_1) \cap (y_3 < y_1) \cap ... \cap (y_{M} < y_1) \hspace{0.05cm}| \hspace{0.05cm} m = m_0\big ] = {\rm Pr} \left [ \hspace{0.1cm} \bigcap\limits_{k = 2}^M (y_k < y_1) \hspace{0.05cm}| \hspace{0.05cm}m = m_0\right ] \hspace{0.01cm}.\]

$\text{Fazit:}$ 

  • Die Fehlerwahrscheinlichkeit der $M$–stufigen FSK ist bei nichtkohärenter Demodulation gleich ${\rm Pr}({\cal{E} }) = 1 - {\rm Pr}({\cal{C} })$.
  • Nachfolgend wird gezeigt, dass ${\rm Pr}({\cal{C} })$ wie folgt dargestellt werden kann:
\[{\rm Pr}({\cal{C} }) = \sum_{i = 0}^{M-1} (-1)^i \cdot {M-1 \choose i } \cdot \frac{1}{i+1} \cdot {\rm exp } \left [ - \frac{i \cdot E_{\rm S} } {(i+1) \cdot N_0}\right ] \hspace{0.05cm}\hspace{0.5cm} \text{mit}\hspace{0.5cm} E_{\rm S} = E_{\rm B} \cdot {\rm log_2}(M)\hspace{0.05cm}.\]
  • Im Sonderfall $M = 2$ ergibt sich natürlich wieder das im letzten Abschnitt erhaltene Ergebnis:
\[p_{\rm S} = {\rm Pr}({\cal{E} }) = {1}/{2} \cdot {\rm e}^{-E_{\rm S}/(2 N_0)} \hspace{0.05cm}.\]


$\text{Herleitung:}$  Das vorweg genommene Ergebnis soll nun in einigen Rechenschritten hergeleitet werden. Hierbei gibt es gewisse Analogien zur Herleitung der BFSK–Fehlerwahrscheinlichkeit.

(1)   Mit der bedingten Wahrscheinlichkeitsdichte $p_{y_1 \hspace{0.01cm} \vert\hspace{0.03cm}m} ( \eta_1 \hspace{0.05cm} \vert \hspace{0.05cm}m_0)$ erhält man:

\[{\rm Pr}({\cal{C} }) = \int_{0}^{\infty} {\rm Pr} \left [ \hspace{0.1cm} \bigcap\limits_{k = 2}^M (y_k < y_1) \hspace{0.05cm}\vert\hspace{0.05cm}y_1 = \eta_1, m = m_0\right ] \cdot p_{y_1 \hspace{0.01cm} \vert\hspace{0.03cm}m} ( \eta_1 \hspace{0.05cm} \vert \hspace{0.05cm}m_0) \,\,{\rm d} \eta_1 \hspace{0.05cm}.\]

(2)   Die Entscheidungswerte $y_2$, $y_3$, ... , $y_M$ sind bei gegebenem $y_1$ statistisch unabhängig. Deshalb gilt:

\[{\rm Pr}({\cal{C} }) = \int_{0}^{\infty} \left \{ {\rm Pr} \big [ (y_2 < y_1) \hspace{0.05cm}\vert \hspace{0.05cm}y_1 = \eta_1, m = m_0\big ] \right \}^{M-1} \cdot p_{y_1 \hspace{0.01cm} \vert\hspace{0.03cm}m} ( \eta_1 \hspace{0.05cm} \vert \hspace{0.05cm}m_0) \,\,{\rm d} \eta_1 \hspace{0.05cm}.\]

(3)   Der ausgewählte Wert $y_2$ konditioniert auf $m_0$ besitzt eine Rayleighverteilung mit Parameter $\sigma_n^2$:

\[{\rm Pr} \big [ (y_2 < y_1) \hspace{0.05cm} \vert \hspace{0.05cm}y_1 = \eta_1, m = m_0\big ] \hspace{-0.1cm} = \hspace{-0.1cm} \int_{0}^{\eta_1} p_{y_2 \hspace{0.01cm} \vert\hspace{0.03cm}m} ( \eta_2 \hspace{0.05cm} \vert \hspace{0.05cm}m_0)\,\,{\rm d} \eta_2= 1 - {\rm exp } \big [ - {\eta_1^2 }/({2 \sigma_n^2})\big ] = 1 - a \hspace{0.2cm}{\rm(Abk\ddot{u}rzung)} \hspace{0.05cm}.\]

(4)   Gesucht ist nun der Ausdruck $(1 -a)^{M-1}$, für den mit der Abkürzung aus (3) gilt:

\[ (1-a)^{M-1} \hspace{-0.1cm} = \hspace{-0.1cm} \sum_{i = 0}^{M-1} (-1)^i \cdot {M-1 \choose i } \cdot (-1)^i \cdot a^i = \sum_{i = 0}^{M-1} (-1)^i \cdot {M-1 \choose i } \cdot {\rm exp } \left [ - \frac{i \cdot \eta_1^2 }{2 \sigma_n^2}\right ] \hspace{0.05cm}.\]

(5)   $y_1$ besitzt konditioniert auf $m=M_1$ eine Riceverteilung. Die Wahrscheinlichkeit für eine korrekte Entscheidung lässt sich somit in folgende Form bringen:

\[{\rm Pr}({\cal{C} }) \hspace{-0.1cm} = \hspace{-0.1cm} \sum_{i = 0}^{M-1} (-1)^i \cdot {M-1 \choose i } \cdot \int_{0}^{\infty} {\rm exp } \left [ - \frac{i \cdot \eta_1^2 }{2 \sigma_n^2}\right ] \cdot \frac{\eta_1}{ \sigma_n^2}\cdot {\rm exp } \left [ - \frac{\eta_1^2 + E_{\rm S} }{2 \sigma_n^2}\right ] \cdot {\rm I }_0 \left [ \frac{\eta_1 \cdot \sqrt{E_{\rm S} } }{ \sigma_n^2}\right ] \,\,{\rm d} \eta_1 \hspace{0.05cm}.\]

(6)   Durch Substitutionen gelingt es, den Integranden gemäß der Riceverteilung zu gestalten. Da sich jede Wahrscheinlichkeitsdichte zu Eins integriert, erhält man:

\[{\rm Pr}({\cal{C} }) = \sum_{i = 0}^{M-1} (-1)^i \cdot {M-1 \choose i } \cdot \frac{1}{i+1} \cdot {\rm exp } \left [ - \frac{i \cdot E_{\rm S} } {(i+1) \cdot N_0}\right ] \hspace{0.05cm}\hspace{0.5cm} \text{mit}\hspace{0.5cm} E_{\rm S} = E_{\rm B} \cdot {\rm log_2}(M)\hspace{0.05cm}.\]

(7)   Der Sonderfall $M = 2$ führt zum genau gleichen Ergebnis, wie für die binäre FSK berechnet:

\[{\rm Pr}({\cal{C} }) = (-1)^0 \cdot {2-1 \choose 0 } \cdot \frac{1}{0+1} \cdot {\rm exp } \left [ - \frac{0 \cdot E_{\rm S} } {(i+1) \cdot N_0}\right ] + (-1)^1 \cdot {2-1 \choose 1 } \cdot \frac{1}{1+1} \cdot {\rm exp } \left [ - \frac{1 \cdot E_{\rm S} } {(i+1) \cdot N_0}\right ]= \]
\[ {\rm Pr}({\cal{C} }) = 1 - {1}/{2} \cdot {\rm e }^{-E_{\rm S}/(2N_0)} \hspace{0.5cm} \Rightarrow \hspace{0.5cm} {\rm Pr}({\cal{E} }) = 1 - {\rm Pr}({\cal{C} }) = {1}/{2} \cdot {\rm e }^{-E_{\rm S}/(2N_0)} \hspace{0.05cm}.\]

Aufgaben zum Kapitel


Aufgabe 4.17: Nichtkohärentes On-Off-Keying

Aufgabe 4.17Z: Rayleigh- und Riceverteilung

Aufgabe 4.18: Nichtkohärente_FSK–Demodulation

Aufgabe 4.18Z: BER von kohärenter und nichtkohärenter FSK

Aufgabe 4.19: Orthogonale mehrstufige FSK