Aufgaben:Aufgabe 3.3: Entropie von Ternärgrößen: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 6: Zeile 6:
 
Rechts sehen Sie die Entropiefunktionen  $H_{\rm R}(p)$,  $H_{\rm B}(p)$  und  $H_{\rm G}(p)$, wobei  $\rm R$  für „Rot” steht,  $\rm B$  für „Blau” und  $\rm G$  für „Grün”.  Die Wahrscheinlichkeitsfunktionen lauten für alle Zufallsgrößen:
 
Rechts sehen Sie die Entropiefunktionen  $H_{\rm R}(p)$,  $H_{\rm B}(p)$  und  $H_{\rm G}(p)$, wobei  $\rm R$  für „Rot” steht,  $\rm B$  für „Blau” und  $\rm G$  für „Grün”.  Die Wahrscheinlichkeitsfunktionen lauten für alle Zufallsgrößen:
 
:$$P_X(X) = [\hspace{0.05cm}p_1\hspace{0.05cm},\ p_2\hspace{0.05cm},\ p_3\hspace{0.05cm}]\hspace{0.3cm}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} |X| = 3\hspace{0.05cm}.$$
 
:$$P_X(X) = [\hspace{0.05cm}p_1\hspace{0.05cm},\ p_2\hspace{0.05cm},\ p_3\hspace{0.05cm}]\hspace{0.3cm}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} |X| = 3\hspace{0.05cm}.$$
Für die Grafik gilt der Zusammenhang  $p_1 = p$  und  $p_2 = 1 - p_3- p$.
+
Für den Fragebogen gilt der Zusammenhang  $p_1 = p$  und  $p_2 = 1 - p_3- p$.
  
 
Die Wahrscheinlichkeitsfunktion einer Zufallsgröße
 
Die Wahrscheinlichkeitsfunktion einer Zufallsgröße
Zeile 16: Zeile 16:
 
und liegt stets im Bereich  $0 \le H(X)  \le  \log_2 \hspace{0.05cm}  |X|$.  
 
und liegt stets im Bereich  $0 \le H(X)  \le  \log_2 \hspace{0.05cm}  |X|$.  
  
 +
*Die untere Schranke  $H(X) = 0$  ergibt sich, wenn eine beliebige Wahrscheinlichkeit  $p_\mu = 1$  ist und alle anderen Null sind.
  
*Die untere Schranke  $H(X) = 0$  ergibt sich, wenn eine beliebige Wahrscheinlichkeit $p_\mu = 1$ ist und alle anderen Null sind. Die obere Schranke soll hier wie in der Vorlesung „Information Theory” von [[Biografien_und_Bibliografien/Lehrstuhlinhaber_des_LNT#Prof._Dr._sc._techn._Gerhard_Kramer_.28seit_2010.29|Gerhard Kramer]] an der TU München hergeleitet werden:
+
*Die obere Schranke soll hier wie in der Vorlesung „Information Theory” von  [[Biografien_und_Bibliografien/Lehrstuhlinhaber_des_LNT#Prof._Dr._sc._techn._Gerhard_Kramer_.28seit_2010.29|Gerhard Kramer]]  an der TU München hergeleitet werden:
 
[[Datei:P_ID2755__Inf_A_3_3_B_neu.png|right|frame|Obere Abschätzung für den natürlichen Logarithmus]]
 
[[Datei:P_ID2755__Inf_A_3_3_B_neu.png|right|frame|Obere Abschätzung für den natürlichen Logarithmus]]
* Durch Erweiterung obiger Gleichung um $|X|$ in Zähler und Nenner erhält man unter Verwendung von $\log_2 \hspace{0.05cm}x= \ln(x)/\ln(2)$:
+
:* Durch Erweiterung obiger Gleichung um  $|X|$  in Zähler und Nenner erhält man unter Verwendung von  $\log_2 \hspace{0.05cm}x= \ln(x)/\ln(2)$:
:$$H(X) = \frac{1}{{\rm ln}(2)}\cdot {\rm E} \left [{\rm ln} \hspace{0.1cm} \frac{1}{|X| \cdot P_X(X)} \right ] + {\rm log}_2 \hspace{0.1cm}|X| \hspace{0.05cm}.$$
+
::$$H(X) = \frac{1}{{\rm ln}(2)}\cdot {\rm E} \left [{\rm ln} \hspace{0.1cm} \frac{1}{|X| \cdot P_X(X)} \right ] + {\rm log}_2 \hspace{0.1cm}|X| \hspace{0.05cm}.$$
* Wie aus nebenstehender Grafik hervorgeht, gilt die Abschätzung $\ln(x) \le x-1$ mit der Identität für $x=1$. Somit kann geschrieben werden:
+
:* Wie aus nebenstehender Grafik hervorgeht, gilt die Abschätzung  $\ln(x) \le x-1$  mit der Identität für  $x=1$.  Somit kann geschrieben werden:
:$$H(X) \le \frac{1}{{\rm ln}(2)}\cdot {\rm E} \left [\frac{1}{|X| \cdot P_X(X)} -1 \right ] + {\rm log}_2 \hspace{0.1cm}|X| \hspace{0.05cm}.$$
+
::$$H(X) \le \frac{1}{{\rm ln}(2)}\cdot {\rm E} \left [\frac{1}{|X| \cdot P_X(X)} -1 \right ] + {\rm log}_2 \hspace{0.1cm}|X| \hspace{0.05cm}.$$
* In [[Aufgaben:3.2_Erwartungswertberechnungen|Aufgabe 3.2]] wurde für den Fall $p_\mu \ne 0$ für alle $\mu$ der Erwartungswert ${\rm E} \big [\log_2 \hspace{0.05cm} {1}/{P_X(X)} \big ] =|X|$ berechnet. Damit verschwindet der erste Term und man erhält das bekannte Ergebnis:
+
:* In der  [[Aufgaben:3.2_Erwartungswertberechnungen|Aufgabe 3.2]]  wurde für den Fall  $p_\mu \ne 0$  für alle  $\mu$  der Erwartungswert  ${\rm E} \big [\log_2 \hspace{0.05cm} {1}/{P_X(X)} \big ] =|X|$  berechnet.  Damit verschwindet der erste Term und man erhält das bekannte Ergebnis:
:$$H(X) \le {\rm log}_2 \hspace{0.1cm}|X| \hspace{0.05cm}.$$
+
::$$H(X) \le {\rm log}_2 \hspace{0.1cm}|X| \hspace{0.05cm}.$$
  
  
Zeile 32: Zeile 33:
  
 
''Hinweise:''  
 
''Hinweise:''  
*Die Aufgabe gehört zum  Kapitel [[Informationstheorie/Einige_Vorbemerkungen_zu_zweidimensionalen_Zufallsgrößen|Einige Vorbemerkungen zu den 2D-Zufallsgrößen]].
+
*Die Aufgabe gehört zum  Kapitel  [[Informationstheorie/Einige_Vorbemerkungen_zu_zweidimensionalen_Zufallsgrößen|Einige Vorbemerkungen zu den 2D-Zufallsgrößen]].
*Insbesondere wird Bezug genommen auf die Seite [[Informationstheorie/Einige_Vorbemerkungen_zu_zweidimensionalen_Zufallsgrößen#Wahrscheinlichkeitsfunktion_und_Entropie|Wahrscheinlichkeitsfunktion undEntropie]].
+
*Insbesondere wird Bezug genommen auf die Seite  [[Informationstheorie/Einige_Vorbemerkungen_zu_zweidimensionalen_Zufallsgrößen#Wahrscheinlichkeitsfunktion_und_Entropie|Wahrscheinlichkeitsfunktion undEntropie]].
*Ausgegangen wird hier von der gleichen Konstellation wie in [[Aufgaben:Aufgabe_3.2:_Erwartungswertberechnungen|Aufgabe 3.2]].
+
*Ausgegangen wird hier von der gleichen Konstellation wie in der  [[Aufgaben:Aufgabe_3.2:_Erwartungswertberechnungen|Aufgabe 3.2]].
 
   
 
   
 
*Die Gleichung der binären Entropiefunktion lautet:
 
*Die Gleichung der binären Entropiefunktion lautet:
Zeile 44: Zeile 45:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Aussagen gelten für die rote Entropiefunktion $H_{\rm R}(p)$?
+
{Welche Aussagen gelten für die rote Entropiefunktion&nbsp; $H_{\rm R}(p)$?
 
|type="[]"}
 
|type="[]"}
+ $H_{\rm R}(p)$ ergibt sich zum Beispiel mit &nbsp;$p_1 = p$, &nbsp;$p_2 = 1- p$  &nbsp;und&nbsp; $p_3 = 0$.
+
+ $H_{\rm R}(p)$&nbsp; ergibt sich zum Beispiel mit &nbsp;$p_1 = p$, &nbsp;$p_2 = 1- p$  &nbsp;und&nbsp; $p_3 = 0$.
+ $H_{\rm R}(p)$ ist identisch mit der binären Entropiefunktion $H_{\rm bin}(p)$.
+
+ $H_{\rm R}(p)$&nbsp; ist identisch mit der binären Entropiefunktion&nbsp; $H_{\rm bin}(p)$.
  
  
{Welche Eigenschaften weist die binäre Entropiefunktion $H_{\rm bin}(p)$auf?
+
{Welche Eigenschaften weist die binäre Entropiefunktion&nbsp; $H_{\rm bin}(p)$&nbsp; auf?
 
|type="[]"}
 
|type="[]"}
+ $H_{\rm bin}(p)$ ist konkav hinsichtlich des Parameters $p$.
+
+ $H_{\rm bin}(p)$&nbsp; ist konkav hinsichtlich des Parameters&nbsp; $p$.
- Es gilt $\text {Max }  [H_{\rm bin}(p)] = 2$ bit.
+
- Es gilt&nbsp; $\text {Max }  [H_{\rm bin}(p)] = 2$&nbsp; bit.
  
  
{Welche Aussagen gelten für die blaue Entropiefunktion $H_{\rm B}(p)$?
+
{Welche Aussagen gelten für die blaue Entropiefunktion&nbsp; $H_{\rm B}(p)$?
 
|type="[]"}
 
|type="[]"}
+ $H_{\rm B}(p)$ ergibt sich beispielsweise  mit &nbsp;$p_1 = p$, &nbsp;$p_2 = 1/2- p$  &nbsp;und&nbsp; $p_3 = 1/2$.
+
+ $H_{\rm B}(p)$&nbsp; ergibt sich beispielsweise  mit &nbsp;$p_1 = p$, &nbsp;$p_2 = 1/2- p$  &nbsp;und&nbsp; $p_3 = 1/2$.
+ Es gilt $H_{\rm B}(p = 0)= 1$ bit.  
+
+ Es gilt&nbsp; $H_{\rm B}(p = 0)= 1$&nbsp; bit.  
- Es gilt Es gilt $\text {Max } [H_{\rm B}(p)] =  \log_2 \hspace{0.1cm} (3)$ bit.
+
- Es gilt&nbsp; $\text {Max } [H_{\rm B}(p)] =  \log_2 \hspace{0.1cm} (3)$&nbsp; bit.
  
  
{Welche Aussagen gelten für die grüne Entropiefunktion $H_{\rm G}(p)$?
+
{Welche Aussagen gelten für die grüne Entropiefunktion&nbsp; $H_{\rm G}(p)$?
 
|type="[]"}
 
|type="[]"}
+ $H_{\rm G}(p)$ ergibt sich beispielsweise  mit &nbsp;$p_1 = p$, &nbsp;$p_2 = 2/3- p$  &nbsp;und&nbsp; $p_3 = 1/3$.
+
+ $H_{\rm G}(p)$&nbsp; ergibt sich beispielsweise  mit &nbsp;$p_1 = p$, &nbsp;$p_2 = 2/3- p$  &nbsp;und&nbsp; $p_3 = 1/3$.
- Es gilt $H_{\rm G}(p = 0)= 1$ bit.
+
- Es gilt&nbsp; $H_{\rm G}(p = 0)= 1$&nbsp; bit.
+ Es gilt $\text {Max } [H_{\rm G}(p)] =  \log_2 \hspace{0.1cm} (3)$ bit.
+
+ Es gilt&nbsp; $\text {Max } [H_{\rm G}(p)] =  \log_2 \hspace{0.1cm} (3)$ bit.
  
  

Version vom 30. Januar 2020, 15:36 Uhr

Vorgegebene Entropiefunktionen

Rechts sehen Sie die Entropiefunktionen  $H_{\rm R}(p)$,  $H_{\rm B}(p)$  und  $H_{\rm G}(p)$, wobei  $\rm R$  für „Rot” steht,  $\rm B$  für „Blau” und  $\rm G$  für „Grün”.  Die Wahrscheinlichkeitsfunktionen lauten für alle Zufallsgrößen:

$$P_X(X) = [\hspace{0.05cm}p_1\hspace{0.05cm},\ p_2\hspace{0.05cm},\ p_3\hspace{0.05cm}]\hspace{0.3cm}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} |X| = 3\hspace{0.05cm}.$$

Für den Fragebogen gilt der Zusammenhang  $p_1 = p$  und  $p_2 = 1 - p_3- p$.

Die Wahrscheinlichkeitsfunktion einer Zufallsgröße

$$X = \big \{\hspace{0.05cm}x_1\hspace{0.05cm}, \hspace{0.15cm} x_2\hspace{0.05cm},\hspace{0.15cm} \text{...}\hspace{0.1cm} ,\hspace{0.15cm} x_{\mu}\hspace{0.05cm}, \hspace{0.05cm}\text{...}\hspace{0.1cm} , \hspace{0.15cm} x_{M}\hspace{0.05cm}\big \}$$

mit dem Symbolumfang  $|X| = M$  lautet allgemein:

$$P_X(X) = [\hspace{0.05cm}p_1\hspace{0.05cm}, \hspace{0.15cm} p_2\hspace{0.05cm},\hspace{0.05cm} ...\hspace{0.1cm} ,\hspace{0.15cm} p_{\mu}\hspace{0.05cm}, \hspace{0.05cm}...\hspace{0.1cm} , \hspace{0.15cm} p_{M}\hspace{0.05cm}]\hspace{0.05cm}.$$

Die Entropie (Unsicherheit) dieser Zufallsgröße berechnet sich entsprechend der Gleichung

$$H(X) = {\rm E} \big [\log_2 \hspace{0.05cm} {1}/{P_X(X)} \big ]\hspace{0.05cm},$$

und liegt stets im Bereich  $0 \le H(X) \le \log_2 \hspace{0.05cm} |X|$.

  • Die untere Schranke  $H(X) = 0$  ergibt sich, wenn eine beliebige Wahrscheinlichkeit  $p_\mu = 1$  ist und alle anderen Null sind.
  • Die obere Schranke soll hier wie in der Vorlesung „Information Theory” von  Gerhard Kramer  an der TU München hergeleitet werden:
Obere Abschätzung für den natürlichen Logarithmus
  • Durch Erweiterung obiger Gleichung um  $|X|$  in Zähler und Nenner erhält man unter Verwendung von  $\log_2 \hspace{0.05cm}x= \ln(x)/\ln(2)$:
$$H(X) = \frac{1}{{\rm ln}(2)}\cdot {\rm E} \left [{\rm ln} \hspace{0.1cm} \frac{1}{|X| \cdot P_X(X)} \right ] + {\rm log}_2 \hspace{0.1cm}|X| \hspace{0.05cm}.$$
  • Wie aus nebenstehender Grafik hervorgeht, gilt die Abschätzung  $\ln(x) \le x-1$  mit der Identität für  $x=1$.  Somit kann geschrieben werden:
$$H(X) \le \frac{1}{{\rm ln}(2)}\cdot {\rm E} \left [\frac{1}{|X| \cdot P_X(X)} -1 \right ] + {\rm log}_2 \hspace{0.1cm}|X| \hspace{0.05cm}.$$
  • In der  Aufgabe 3.2  wurde für den Fall  $p_\mu \ne 0$  für alle  $\mu$  der Erwartungswert  ${\rm E} \big [\log_2 \hspace{0.05cm} {1}/{P_X(X)} \big ] =|X|$  berechnet.  Damit verschwindet der erste Term und man erhält das bekannte Ergebnis:
$$H(X) \le {\rm log}_2 \hspace{0.1cm}|X| \hspace{0.05cm}.$$




Hinweise:

  • Die Gleichung der binären Entropiefunktion lautet:
$$H_{\rm bin}(p) = p \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{p} + (1-p) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{1-p} \hspace{0.05cm}.$$


Fragebogen

1

Welche Aussagen gelten für die rote Entropiefunktion  $H_{\rm R}(p)$?

$H_{\rm R}(p)$  ergibt sich zum Beispiel mit  $p_1 = p$,  $p_2 = 1- p$  und  $p_3 = 0$.
$H_{\rm R}(p)$  ist identisch mit der binären Entropiefunktion  $H_{\rm bin}(p)$.

2

Welche Eigenschaften weist die binäre Entropiefunktion  $H_{\rm bin}(p)$  auf?

$H_{\rm bin}(p)$  ist konkav hinsichtlich des Parameters  $p$.
Es gilt  $\text {Max } [H_{\rm bin}(p)] = 2$  bit.

3

Welche Aussagen gelten für die blaue Entropiefunktion  $H_{\rm B}(p)$?

$H_{\rm B}(p)$  ergibt sich beispielsweise mit  $p_1 = p$,  $p_2 = 1/2- p$  und  $p_3 = 1/2$.
Es gilt  $H_{\rm B}(p = 0)= 1$  bit.
Es gilt  $\text {Max } [H_{\rm B}(p)] = \log_2 \hspace{0.1cm} (3)$  bit.

4

Welche Aussagen gelten für die grüne Entropiefunktion  $H_{\rm G}(p)$?

$H_{\rm G}(p)$  ergibt sich beispielsweise mit  $p_1 = p$,  $p_2 = 2/3- p$  und  $p_3 = 1/3$.
Es gilt  $H_{\rm G}(p = 0)= 1$  bit.
Es gilt  $\text {Max } [H_{\rm G}(p)] = \log_2 \hspace{0.1cm} (3)$ bit.


Musterlösung

(1)  Beide Aussagen sind richtig:

  • Setzt man  $p_3 = 0$ und formal  $p_1 = p$   ⇒    $p_2 = 1- p$, so ergibt sich die binäre Entropiefunktion
$$H_{\rm bin}(p) = p \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{p} + (1-p) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{1-p} \hspace{0.05cm}.$$


(2)  Richtig ist allein der Lösungsvorschlag 1:

  • Man kann die binäre Entropiefunktion wegen $\log(x) = \ln(x)/\ln(2)$ auch in die folgende Form bringen:
$$H_{\rm bin}(p) = \frac{-1}{{\rm ln}(2)} \cdot \big [ p \cdot {\rm ln}(p) + (1-p) \cdot {\rm ln}(1-p) \big ] \hspace{0.05cm}.$$
  • Die erste Ableitung führt zum Ergebnis
$$\frac {{\rm d}H_{\rm bin}(p)}{{\rm d}p} = \frac{-1}{{\rm ln}(2)} \cdot \big [ {\rm ln}(p) + p \cdot \frac{1}{p} - {\rm ln}(1-p) - (1-p) \cdot \frac{1}{1-p} \big ] = \frac{1}{{\rm ln}(2)} \cdot \big [ {\rm ln}(1-p) - {\rm ln}(p) \big ] = {\rm log}_2 \hspace{0.1cm} \frac{1-p}{p} \hspace{0.05cm}.$$
  • Durch Nullsetzen dieser Ableitung erhält man den Abszissenwert $p = 0.5$, der zum Maximum der Entropiefunktion führt:   $H_{\rm bin}(p =0.5) = 1$ bit
    ⇒   der Lösungsvorschlag 2 ist falsch.
  • Durch nochmaliges Differenzieren erhält man für die zweite Ableitung:
$$\frac {{\rm d}^2H_{\rm bin}(p)}{{\rm d}p^2} = \frac{1}{{\rm ln}(2)} \cdot \left [ \frac{-1}{1-p} - \frac{1}{p} \right ] = \frac{-1}{{\rm ln}(2) \cdot p \cdot (1-p)} \hspace{0.05cm}.$$
  • Diese Funktion ist im gesamten Definitionsgebiet $0 ≤ <i>p</i> ≤ 1$ negativ   ⇒   $H_{\rm bin}(p)$ ist konkav   ⇒   der Lösungsvorschlag 1 ist richtig.


Drei Entropiefunktionen mit $M = 3$

(3)  Richtig sind hier die Aussagen 1 und 2:

  • Für $p = 0$ erhält man die Wahrscheinlichkeitsfunktion $P_X(X) = \big [\hspace{0.05cm}0\hspace{0.05cm}, \hspace{0.05cm} 1/2\hspace{0.05cm},\hspace{0.05cm} 1/2 \hspace{0.05cm} \big ]$   ⇒   $H(X) = 1$ bit.
  • Das Maximum unter der Voraussetzung $p_3 = 1/2$ ergibt sich für $p_1 = p_2 = 1/4$:
$$P_X(X) = \big [\hspace{0.05cm}1/4\hspace{0.05cm}, \hspace{0.05cm} 1/4\hspace{0.05cm},\hspace{0.05cm} 1/2 \hspace{0.05cm} \big ] \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm Max} \ [H_{\rm B}(p)] = 1.5 \ \rm bit \hspace{0.05cm}.$$
  • In kompakter Form lässt sich $H_{\rm B}(p)$ mit der Einschränkung $0 ≤ p ≤ 1/2$ wie folgt darstellen:
$$H_{\rm B}(p) = 1.0\,{\rm bit} + {1}/{2} \cdot H_{\rm bin}(2p) \hspace{0.05cm}.$$


(4)  Richtig sind hier die erste und letzte Aussage:

  • Der grüne Kurvenzug beinhaltet mit $p = 1/3$ auch die Gleichverteilung aller Wahrscheinlichkeiten   ⇒   $ {\rm Max} \ [H_{\rm G}(p)] = \log_2 (3)$ bit.
  • Allgemein lässt sich der gesamte Kurvenverlauf im Bereich $0 ≤ p ≤ 2/3$ wie folgt ausdrücken:
$$H_{\rm G}(p) = H_{\rm G}(p= 0) + {2}/{3} \cdot H_{\rm bin}(3p/2) \hspace{0.05cm}.$$
  • Aus der Grafik auf der Angabenseite erkennt man auch, dass folgende Bedingung erfüllt sein muss:
$$H_{\rm G}(p = 0) + {2}/{3}= {\rm log}_2 \hspace{0.01cm} (3) \hspace{0.3cm} \Rightarrow \hspace{0.3cm} H_{\rm G}(p= 0) = 1.585 - 0.667 = 0.918 \,{\rm bit} \hspace{0.05cm}.$$
  • Der zweite Lösungsvorschlag 2 ist somit falsch. Zum gleichen Ergebnis gelangt man über die Gleichung
$$H_{\rm G}(p = 0) = {1}/{3} \cdot {\rm log}_2 \hspace{0.01cm} (3) +{2}/{3} \cdot {\rm log}_2 \hspace{0.01cm} (3/2) = {\rm log}_2 \hspace{0.01cm} (3) -2/3 \cdot {\rm log}_2 \hspace{0.01cm} (2) \hspace{0.05cm}.$$