Applets:Kapazität von digitalen gedächtnislosen Kanälen: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 303: Zeile 303:
 
:*  Aufgrund der Symmetrie des des BSC–Modells  führen gleichwahrscheinliche Symbole  $(p_{\rm A} = p_{\rm B} = 0.5)$  zum Optimum   ⇒   $C_{\rm BSC}=0.531$.
 
:*  Aufgrund der Symmetrie des des BSC–Modells  führen gleichwahrscheinliche Symbole  $(p_{\rm A} = p_{\rm B} = 0.5)$  zum Optimum   ⇒   $C_{\rm BSC}=0.531$.
 
:*  Am besten ist der ideale Kanal  $(p_{\rm b \vert A} = p_{\rm a \vert B} = 0)$  ⇒    $C_{\rm BSC}=1$.  Der schlechteste BSC–Kanal liegt durch  $p_{\rm b \vert A} = p_{\rm a \vert B} = 0.5$  fest   ⇒    $C_{\rm BSC}=0$.
 
:*  Am besten ist der ideale Kanal  $(p_{\rm b \vert A} = p_{\rm a \vert B} = 0)$  ⇒    $C_{\rm BSC}=1$.  Der schlechteste BSC–Kanal liegt durch  $p_{\rm b \vert A} = p_{\rm a \vert B} = 0.5$  fest   ⇒    $C_{\rm BSC}=0$.
 +
:*  Aber auch mit   $p_{\rm b \vert A} = p_{\rm a \vert B} = 1$  ergibt sich   $C_{\rm BSC}=1$.  Hier Fall werden alle Symbole invertiert, was informationstheoretisch das gleiche ist wie  $\langle Y_n \rangle = \langle X_n \rangle$.
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
Zeile 308: Zeile 309:
  
 
:*  Im Gegensatz zum Versuch  '''(1)'''  liegt hier kein BSC-Kanal vor.  Vielmehr ist der hier betrachtete Kanal unsymmetrisch:  $p_{\rm b \vert A} \ne p_{\rm a \vert B}$.
 
:*  Im Gegensatz zum Versuch  '''(1)'''  liegt hier kein BSC-Kanal vor.  Vielmehr ist der hier betrachtete Kanal unsymmetrisch:  $p_{\rm b \vert A} \ne p_{\rm a \vert B}$.
:*  Die Ergebnisse für  $\text{Beispiel 2}$    ⇒   $p_{\rm A} = 0.1,\ p_{\rm B} = 0.9$  waren:  $H(X)= 0.469$,  $H(Y)= 0.994$,  $H(X \vert Y)=0.377$,  $H(Y \vert X)=0.902$,  $I(X;\ Y)=0.092$.
+
:*  Gemäß  $\text{Beispiel 2}$  gilt für  $p_{\rm A} = 0.1,\ p_{\rm B} = 0.9$:     $H(X)= 0.469$,  $H(Y)= 0.994$,  $H(X \vert Y)=0.377$,  $H(Y \vert X)=0.902$,  $I(X;\ Y)=0.092$.
 
:*  Nun gilt  $p_{\rm A} = p_{\rm B} = 0.5$  und man erhält  $H(X)= 1.000$,  $H(Y)= 0.910$,  $H(X \vert Y)=0.719$,  $H(Y \vert X)=0.629$,  $I(X;\ Y)=0.281$.
 
:*  Nun gilt  $p_{\rm A} = p_{\rm B} = 0.5$  und man erhält  $H(X)= 1.000$,  $H(Y)= 0.910$,  $H(X \vert Y)=0.719$,  $H(Y \vert X)=0.629$,  $I(X;\ Y)=0.281$.
 
:*  Alle Ausgabewerte hängen signifikant von  $p_{\rm A}$  und  $p_{\rm B}=1-p_{\rm A}$  ab mit Ausnahme der bedingten Wahrscheinlichkeiten  ${\rm Pr}(Y \vert X)\ \in \ \{\hspace{0.05cm}0.95,\ 0.05,\ 0.4,\ 0.6\hspace{0.05cm} \}$.
 
:*  Alle Ausgabewerte hängen signifikant von  $p_{\rm A}$  und  $p_{\rm B}=1-p_{\rm A}$  ab mit Ausnahme der bedingten Wahrscheinlichkeiten  ${\rm Pr}(Y \vert X)\ \in \ \{\hspace{0.05cm}0.95,\ 0.05,\ 0.4,\ 0.6\hspace{0.05cm} \}$.
Zeile 322: Zeile 323:
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(5)'''  Gleiche Einstellung wie bei  '''(4)'''.  Welche Unterschiede erkennen Sie hinsichtlich analytischer Berechnung und „Simulation”  $(N=10000)$. }}
+
'''(5)'''  Einstellung gemäß  '''(4)'''.  Wie underscheidet sich  $I_{\rm Sim}(X;\ Y)$  für  $N=10^3$,  $10^4$,  $10^5$  von  $I(X;\ Y) = 0.281$ ?  Jeweils Mittelung über zehn Realisierungen.  }} 
 +
:*  $N=10^3$:   $0.232 \le I_{\rm Sim} \le 0.295$,   Mittelwert:   $0.263$   |   $N=10^4$:   $0.267 \le I_{\rm Sim} \le 0.293$   MW:  $0.279$   |   $N=10^5$:   $0.280 \le I_{\rm Sim} \le 0.285$   MW:  $0.282$.
 +
:*  Mit  $N=10^6$  unterscheidet sich bei diesem Kanal das Simulationsergebnis vom theoretischen Wert um weniger als  $\pm 0.001$.
  
  

Version vom 4. April 2020, 14:37 Uhr

Applet in neuem Tab öffnen

Programmbeschreibung


In diesem Applet werden binäre  $(M=2)$  und ternäre  $(M=3)$  Kanalmodelle ohne Gedächtnis betrachtet mit jeweils  $M$  Eingängen  $X$  und  $M$  Ausgängen  $Y$.  Ein solches Nachrichtensystem ist durch die Wahrscheinlichkeitsfunktion  $P_X(X)$  und die Matrix  $P_{\hspace{0.01cm}Y\hspace{0.03cm} \vert \hspace{0.01cm}X}(Y\hspace{0.03cm} \vert \hspace{0.03cm} X)$  der Übergangswahrscheinlichkeiten vollständig bestimmt.


Für diese binären bzw. ternären Systeme werden folgende informationstheoretische Beschreibungsgrößen hergeleitet und verdeutlicht:

  • die  Quellenentropie   $H(X)$  und die  Sinkenentropie   $H(Y)$,
  • die  Äquivokation   („Rückschlussentropie”)  $H(X|Y)$  und die   Irrelevanz („Streuentropie”)  $H(Y|X)$,
  • die  Verbundentropie   $H(XY)$  sowie die Transinformation  (englisch:  Mutual Information)  $I(X; Y)$,
  • die  Kanalkapazität   als die entscheidende Kenngröße digitaler Kanalmodelle ohne Gedächtnis:
$$C = \max_{P_X(X)} \hspace{0.15cm} I(X;Y) \hspace{0.05cm}.$$

Diese informationstheoretische Größen können sowohl in analytische geschlossener Form berechnet oder durch Auswertung von Quellen– und Sinkensymbolfolge simulativ ermittelt werden.

Theoretischer Hintergrund


Zugrunde liegendes Modell der Digitalsignalübertragung

Die Menge der möglichen  Quellensymbole  wird durch die diskrete Zufallsgröße  $X$  charakterisiert. 

  • Im binären Fall   ⇒   $M_X= |X| = 2$  gilt  $X = \{\hspace{0.05cm}{\rm A}, \hspace{0.15cm} {\rm B} \hspace{0.05cm}\}$  mit der Wahrscheinlichkeitsfunktion  $($englisch:  Probability Mass Function,  $\rm PMF)$   $P_X(X)= \big (p_{\rm A},\hspace{0.15cm}p_{\rm B}\big)$  sowie den Quellensymbolwahrscheinlichkeiten  $p_{\rm A}$  und  $p_{\rm B}=1- p_{\rm A}$.
  • Entsprechend gilt für eine Ternärquelle  ⇒   $M_X= |X| = 3$:     $X = \{\hspace{0.05cm}{\rm A}, \hspace{0.15cm} {\rm B}, \hspace{0.15cm} {\rm C} \hspace{0.05cm}\}$,     $P_X(X)= \big (p_{\rm A},\hspace{0.15cm}p_{\rm B},\hspace{0.15cm}p_{\rm C}\big)$,     $p_{\rm C}=1- p_{\rm A}-p_{\rm B}$.


Die Menge der möglichen  Sinkensymbole  wird durch die diskrete Zufallsgröße  $Y$  charakterisiert.  Diese entstammen der gleichen Symbolmenge wie die Quellensymbole   ⇒   $M_Y=M_X = M$.  Zur Vereinfachung der nachfolgenden Beschreibung bezeichnen wir diese mit Kleinbuchstaben, zum Beispiel für  $M=3$:    $Y = \{\hspace{0.05cm}{\rm a}, \hspace{0.15cm} {\rm b}, \hspace{0.15cm} {\rm c} \hspace{0.05cm}\}$.

Der Zusammenhang zwischen den Zufallsgrößen  $X$  und  $Y$  ist durch ein  digitales Kanalmodell ohne Gedächtnis  $($englisch:  Discrete Memoryless Channel,  $\rm DMC)$  festgelegt. Die linke Grafik zeigt dieses für  $M=2$  und die rechte Grafik für  $M=3$.

Digitales Kanalmodell für  $M=2$  (links) und für  $M=3$  (rechts).
Bitte beachten Sie:  In der rechten Grafik sind nicht alle Übergänge beschriftet

Die folgende Beschreibung gilt für den einfacheren Fall  $M=2$.  Für die Berechnung aller informationstheoretischer Größen im nächsten Abschnitt benötigen wir außer  $P_X(X)$  und  $P_Y(Y)$  noch die zweidimensionalen Wahrscheinlichkeitsfunktionen  $($jeweils eine  $2\times2$–Matrix$)$  aller

  1.   bedingten Wahrscheinlichkeiten   ⇒   $P_{\hspace{0.01cm}Y\hspace{0.03cm} \vert \hspace{0.01cm}X}(Y\hspace{0.03cm} \vert \hspace{0.03cm} X)$   ⇒   durch das DMC–Modell vorgegeben;
  2.   Verbundwahrscheinlichkeiten  ⇒   $P_{XY}(X,\hspace{0.1cm}Y)$;
  3.   Rückschlusswahrscheinlichkeiten   ⇒   $P_{\hspace{0.01cm}X\hspace{0.03cm} \vert \hspace{0.03cm}Y}(X\hspace{0.03cm} \vert \hspace{0.03cm} Y)$.


Betrachtetes Modell des Binärkanals

$\text{Beispiel 1}$:  Wir betrachten den skizzierten Binärkanal.

  • Die Verfälschungswahrscheinlichkeiten seien:
$$\begin{align*}p_{\rm a\hspace{0.03cm}\vert \hspace{0.03cm}A} & = {\rm Pr}(Y\hspace{-0.1cm} = {\rm a}\hspace{0.05cm}\vert X \hspace{-0.1cm}= {\rm A}) = 0.95\hspace{0.05cm},\hspace{0.8cm}p_{\rm b\hspace{0.03cm}\vert \hspace{0.03cm}A} = {\rm Pr}(Y\hspace{-0.1cm} = {\rm b}\hspace{0.05cm}\vert X \hspace{-0.1cm}= {\rm A}) = 0.05\hspace{0.05cm},\\ p_{\rm a\hspace{0.03cm}\vert \hspace{0.03cm}B} & = {\rm Pr}(Y\hspace{-0.1cm} = {\rm a}\hspace{0.05cm}\vert X \hspace{-0.1cm}= {\rm B}) = 0.40\hspace{0.05cm},\hspace{0.8cm}p_{\rm b\hspace{0.03cm}\vert \hspace{0.03cm}B} = {\rm Pr}(Y\hspace{-0.1cm} = {\rm b}\hspace{0.05cm}\vert X \hspace{-0.1cm}= {\rm B}) = 0.60\end{align*}$$
$$\Rightarrow \hspace{0.3cm} P_{\hspace{0.01cm}Y\hspace{0.05cm} \vert \hspace{0.05cm}X}(Y\hspace{0.05cm} \vert \hspace{0.05cm} X) = \begin{pmatrix} 0.95 & 0.05\\ 0.4 & 0.6 \end{pmatrix} \hspace{0.05cm}.$$
  • Außerdem gehen wir von nicht gleichwahrscheinlichen Quellensymbolen aus:
$$P_X(X) = \big ( p_{\rm A},\ p_{\rm B} \big )= \big ( 0.1,\ 0.9 \big ) \hspace{0.05cm}.$$
  • Für die Wahrscheinlichkeitsfunktion der Sinke ergibt sich somit:
$$P_Y(Y) = \big [ {\rm Pr}( Y\hspace{-0.1cm} = {\rm a})\hspace{0.05cm}, \ {\rm Pr}( Y \hspace{-0.1cm}= {\rm b}) \big ] = \big ( 0.1\hspace{0.05cm},\ 0.9 \big ) \cdot \begin{pmatrix} 0.95 & 0.05\\ 0.4 & 0.6 \end{pmatrix} $$
$$\Rightarrow \hspace{0.3cm} {\rm Pr}( Y \hspace{-0.1cm}= {\rm a}) = 0.1 \cdot 0.95 + 0.9 \cdot 0.4 = 0.455\hspace{0.05cm},\hspace{1.0cm} {\rm Pr}( Y \hspace{-0.1cm}= {\rm b}) = 1 - {\rm Pr}( Y \hspace{-0.1cm}= {\rm a}) = 0.545.$$
  • Die Verbundwahrscheinlichkeiten  $p_{\mu \kappa} = \text{Pr}\big[(X = μ) ∩ (Y = κ)\big]$  zwischen Quelle und Sinke sind:
$$\begin{align*}p_{\rm Aa} & = p_{\rm a} \cdot p_{\rm a\hspace{0.03cm}\vert \hspace{0.03cm}A} = 0.095\hspace{0.05cm},\hspace{0.5cm}p_{\rm Ab} = p_{\rm b} \cdot p_{\rm b\hspace{0.03cm}\vert \hspace{0.03cm}A} = 0.005\hspace{0.05cm},\\ p_{\rm Ba} & = p_{\rm a} \cdot p_{\rm a\hspace{0.03cm}\vert \hspace{0.03cm}B} = 0.360\hspace{0.05cm}, \hspace{0.5cm}p_{\rm Bb} = p_{\rm b} \cdot p_{\rm b\hspace{0.03cm}\vert \hspace{0.03cm}B} = 0.540\hspace{0.05cm}. \end{align*}$$
$$\Rightarrow \hspace{0.3cm} P_{XY}(X,\hspace{0.1cm}Y) = \begin{pmatrix} 0.095 & 0.005\\ 0.36 & 0.54 \end{pmatrix} \hspace{0.05cm}.$$
  • Für die Rückschlusswahrscheinlichkeiten erhält man:
$$\begin{align*}p_{\rm A\hspace{0.03cm}\vert \hspace{0.03cm}a} & = p_{\rm Aa}/p_{\rm a} = 0.095/0.455 = 0.2088\hspace{0.05cm},\hspace{0.5cm}p_{\rm A\hspace{0.03cm}\vert \hspace{0.03cm}b} = p_{\rm Ab}/p_{\rm b} = 0.005/0.545 = 0.0092\hspace{0.05cm},\\ p_{\rm B\hspace{0.03cm}\vert \hspace{0.03cm}a} & = p_{\rm Ba}/p_{\rm a} = 0.36/0.455 = 0.7912\hspace{0.05cm},\hspace{0.5cm}p_{\rm B\hspace{0.03cm}\vert \hspace{0.03cm}b} = p_{\rm Bb}/p_{\rm b} = 0.54/0.545 = 0.9908\hspace{0.05cm} \end{align*}$$
$$\Rightarrow \hspace{0.3cm} P_{\hspace{0.01cm}X\hspace{0.05cm} \vert \hspace{0.05cm}Y}(X\hspace{0.05cm} \vert \hspace{0.05cm} Y) = \begin{pmatrix} 0.2088 & 0.0092\\ 0.7912 & 0.9908 \end{pmatrix} \hspace{0.05cm}.$$




Definition und Interpretation verschiedener Entropiefunktionen

Im  $\rm LNTwww$–Theorieteil  werden alle für 2D–Zufallsgrößen relevanten Entropien definiert, die auch für die Digitalsignalübertragung gelten.  Zudem finden Sie dort zwei Schaubilder, die den Zusammenhang zwischen den einzelnen Entropien illustrieren. 

  • Für die Digitalsignalübertragung ist die rechte Darstellung zweckmäßig, bei der die Richtung von der Quelle  $X$  zur Sinke  $Y$  erkennbar ist. 
  • Wir interpretieren nun ausgehend von dieser Grafik die einzelnen informationstheoretischen Größen.


Zwei informationstheoretische Modelle für die Digitalsignalübertragung.
Bitte beachten Sie:  In der rechten Grafik ist  $H_{XY}$  nicht darstellbar
  • Die  Quellenentropie  (englisch:  Source Entropy )  $H(X)$  bezeichnet den mittleren Informationsgehalt der Quellensymbolfolge.  Mit dem Symbolumfang  $|X|$  gilt:
$$H(X) = {\rm E} \left [ {\rm log}_2 \hspace{0.1cm} \frac{1}{P_X(X)}\right ] \hspace{0.1cm} = -{\rm E} \big [ {\rm log}_2 \hspace{0.1cm}{P_X(X)}\big ] \hspace{0.2cm} =\hspace{0.2cm} \sum_{\mu = 1}^{|X|} P_X(x_{\mu}) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{P_X(x_{\mu})} \hspace{0.05cm}.$$
  • Die  Äquivokation  (auch  Rückschlussentropie genannt, englisch:  Equivocation )  $H(X|Y)$  gibt den mittleren Informationsgehalt an, den ein Betrachter, der über die Sinke  $Y$  genau Bescheid weiß, durch Beobachtung der Quelle  $X$  gewinnt:
$$H(X|Y) = {\rm E} \left [ {\rm log}_2 \hspace{0.1cm} \frac{1}{P_{\hspace{0.05cm}X\hspace{-0.01cm}|\hspace{-0.01cm}Y}(X\hspace{-0.01cm} |\hspace{0.03cm} Y)}\right ] \hspace{0.2cm}=\hspace{0.2cm} \sum_{\mu = 1}^{|X|} \sum_{\kappa = 1}^{|Y|} P_{XY}(x_{\mu},\hspace{0.05cm}y_{\kappa}) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{P_{\hspace{0.05cm}X\hspace{-0.01cm}|\hspace{0.03cm}Y} (\hspace{0.05cm}x_{\mu}\hspace{0.03cm} |\hspace{0.05cm} y_{\kappa})} \hspace{0.05cm}.$$
  • Die Äquivokation ist der Anteil der Quellenentropie  $H(X)$, der durch Kanalstörungen  (bei digitalem Kanal:  Übertragungsfehler)  verloren geht.  Es verbleibt die  Transinformation  (englisch:  Mutual Information)  $I(X; Y)$, die zur Sinke gelangt:
$$I(X;Y) = {\rm E} \left [ {\rm log}_2 \hspace{0.1cm} \frac{P_{XY}(X, Y)}{P_X(X) \cdot P_Y(Y)}\right ] \hspace{0.2cm}=\hspace{0.2cm} \sum_{\mu = 1}^{|X|} \sum_{\kappa = 1}^{|Y|} P_{XY}(x_{\mu},\hspace{0.05cm}y_{\kappa}) \cdot {\rm log}_2 \hspace{0.1cm} \frac{P_{XY}(x_{\mu},\hspace{0.05cm}y_{\kappa})}{P_{\hspace{0.05cm}X}(\hspace{0.05cm}x_{\mu}) \cdot P_{\hspace{0.05cm}Y}(\hspace{0.05cm}y_{\kappa})} \hspace{0.05cm} = H(X) - H(X|Y) \hspace{0.05cm}.$$
  • Die  Irrelevanz  (manchmal auch  Streuentropie  genannt, englisch:  Irrelevance)  $H(Y|X)$  gibt den mittleren Informationsgehalt an, den ein Betrachter, der über die Quelle  $X$  genau Bescheid weiß, durch Beobachtung der Sinke  $Y$  gewinnt:
$$H(Y|X) = {\rm E} \left [ {\rm log}_2 \hspace{0.1cm} \frac{1}{P_{\hspace{0.05cm}Y\hspace{-0.01cm}|\hspace{-0.01cm}X}(Y\hspace{-0.01cm} |\hspace{0.03cm} X)}\right ] \hspace{0.2cm}=\hspace{0.2cm} \sum_{\mu = 1}^{|X|} \sum_{\kappa = 1}^{|Y|} P_{XY}(x_{\mu},\hspace{0.05cm}y_{\kappa}) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{P_{\hspace{0.05cm}Y\hspace{-0.01cm}|\hspace{0.03cm}X} (\hspace{0.05cm}y_{\kappa}\hspace{0.03cm} |\hspace{0.05cm} x_{\mu})} \hspace{0.05cm}.$$
  • Die  Sinkenentropie  $H(Y)$, der mittlere Informationsgehalt der Sinke, ist die Summe aus der nützlichen Transinformation  $I(X; Y)$  und der Irrelevanz  $H(Y|X)$, die ausschließlich von Kanalfehlern herrührt:
$$H(Y) = {\rm E} \left [ {\rm log}_2 \hspace{0.1cm} \frac{1}{P_Y(Y)}\right ] \hspace{0.1cm} = -{\rm E} \big [ {\rm log}_2 \hspace{0.1cm}{P_Y(Y)}\big ] \hspace{0.2cm} =I(X;Y) + H(Y|X) \hspace{0.05cm}.$$
  • Die  Verbundentropie  $H(XY)$  gibt ist den mittleren Informationsgehalt der 2D–Zufallsgröße  $XY$ an.&nbsp sie beschreibt zudem eine obere Schranke für die Summe aus Quellenentropie und Sinkenentropie:
$$H(XY) = {\rm E} \left [ {\rm log} \hspace{0.1cm} \frac{1}{P_{XY}(X, Y)}\right ] = \sum_{\mu = 1}^{M} \hspace{0.1cm} \sum_{\kappa = 1}^{K} \hspace{0.1cm} P_{XY}(x_{\mu}\hspace{0.05cm}, y_{\kappa}) \cdot {\rm log} \hspace{0.1cm} \frac{1}{P_{XY}(x_{\mu}\hspace{0.05cm}, y_{\kappa})}\le H(X) + H(Y) \hspace{0.05cm}.$$
Betrachtetes Modell des Binärkanals

$\text{Beispiel 2}$:  Es gelten die gleichen Voraussetzungen wie für das  $\text{Beispiel 1}$

(1)  Die Quellensymbole sind nicht gleichwahrscheinlich:

$$P_X(X) = \big ( p_{\rm A},\ p_{\rm B} \big )= \big ( 0.1,\ 0.9 \big ) \hspace{0.05cm}.$$

(2)  Die Verfälschungswahrscheinlichkeiten seien:

$$\begin{align*}p_{\rm a\hspace{0.03cm}\vert \hspace{0.03cm}A} & = {\rm Pr}(Y\hspace{-0.1cm} = {\rm a}\hspace{0.05cm}\vert X \hspace{-0.1cm}= {\rm A}) = 0.95\hspace{0.05cm},\hspace{0.8cm}p_{\rm b\hspace{0.03cm}\vert \hspace{0.03cm}A} = {\rm Pr}(Y\hspace{-0.1cm} = {\rm b}\hspace{0.05cm}\vert X \hspace{-0.1cm}= {\rm A}) = 0.05\hspace{0.05cm},\\ p_{\rm a\hspace{0.03cm}\vert \hspace{0.03cm}B} & = {\rm Pr}(Y\hspace{-0.1cm} = {\rm a}\hspace{0.05cm}\vert X \hspace{-0.1cm}= {\rm B}) = 0.40\hspace{0.05cm},\hspace{0.8cm}p_{\rm b\hspace{0.03cm}\vert \hspace{0.03cm}B} = {\rm Pr}(Y\hspace{-0.1cm} = {\rm b}\hspace{0.05cm}\vert X \hspace{-0.1cm}= {\rm B}) = 0.60\end{align*}$$
$$\Rightarrow \hspace{0.3cm} P_{\hspace{0.01cm}Y\hspace{0.05cm} \vert \hspace{0.05cm}X}(Y\hspace{0.05cm} \vert \hspace{0.05cm} X) = \begin{pmatrix} 0.95 & 0.05\\ 0.4 & 0.6 \end{pmatrix} \hspace{0.05cm}.$$
Binäre Entropiefunktion als Funktion von  $p$
  • Wegen Voraussetzung  (1)  erhält man so für die Quellenentropie mit der  binären Entropiefunktion  $H_{\rm bin}(p)$: 
$$H(X) = p_{\rm A} \cdot {\rm log_2}\hspace{0.1cm}\frac{1}{\hspace{0.1cm}p_{\rm A}\hspace{0.1cm} } + p_{\rm B} \cdot {\rm log_2}\hspace{0.1cm}\frac{1}{p_{\rm B} }= H_{\rm bin} (p_{\rm A}) = H_{\rm bin} (0.1)= 0.469 \ {\rm bit} \hspace{0.05cm};$$
$$H_{\rm bin} (p) = p \cdot {\rm log_2}\hspace{0.1cm}\frac{1}{\hspace{0.1cm}p\hspace{0.1cm} } + (1 - p) \cdot {\rm log_2}\hspace{0.1cm}\frac{1}{1 - p} \hspace{0.5cm}{\rm (Einheit\hspace{-0.15cm}: \hspace{0.15cm}bit\hspace{0.15cm}oder\hspace{0.15cm}bit/Symbol)} \hspace{0.05cm}.$$
  • Entsprechend gilt für die Sinkenentropie mit der PMF  $P_Y(Y) = \big ( p_{\rm a},\ p_{\rm b} \big )= \big ( 0.455,\ 0.545 \big )$:
$$H(Y) = H_{\rm bin} (0.455)= 0.994 \ {\rm bit} \hspace{0.05cm}.$$
  • Als nächstes berechnen wir die Verbundentropie:
$$H(XY) = p_{\rm Aa} \cdot {\rm log_2}\hspace{0.1cm}\frac{1}{\hspace{0.1cm}p_{\rm Aa}\hspace{0.1cm} }+ p_{\rm Ab} \cdot {\rm log_2}\hspace{0.1cm}\frac{1}{\hspace{0.1cm}p_{\rm Ab}\hspace{0.1cm} }+p_{\rm Ba} \cdot {\rm log_2}\hspace{0.1cm}\frac{1}{\hspace{0.1cm}p_{\rm Ba}\hspace{0.1cm} }+ p_{\rm Bb} \cdot {\rm log_2}\hspace{0.1cm}\frac{1}{\hspace{0.1cm}p_{\rm Bb}\hspace{0.1cm} }$$
$$\Rightarrow \hspace{0.3cm}H(XY) = 0.095 \cdot {\rm log_2}\hspace{0.1cm}\frac{1}{0.095 } +0.005 \cdot {\rm log_2}\hspace{0.1cm}\frac{1}{0.005 }+0.36 \cdot {\rm log_2}\hspace{0.1cm}\frac{1}{0.36 }+0.54 \cdot {\rm log_2}\hspace{0.1cm}\frac{1}{0.54 }= 1.371 \ {\rm bit} \hspace{0.05cm}.$$

Entsprechend dem oberen linken Schaubild sind somit auch die restlichen informationstheoretischen Größen berechenbar:

Informationstheoretisches Modell für  $\text{Beispiel 2}$
  • die  Äquivokation  (oder Rückschlussentropie):
$$H(X \vert Y) \hspace{-0.01cm} =\hspace{-0.01cm} H(XY) \hspace{-0.01cm} -\hspace{-0.01cm} H(Y) \hspace{-0.01cm} = \hspace{-0.01cm} 1.371\hspace{-0.01cm} -\hspace{-0.01cm} 0.994\hspace{-0.01cm} =\hspace{-0.01cm} 0.377\ {\rm bit} \hspace{0.05cm},$$
  • die Irrelevanz  (oder Streuentropie):
$$H(Y \vert X) = H(XY) - H(X) = 1.371 - 0.994 = 0.902\ {\rm bit} \hspace{0.05cm}.$$
  • die  Transinformation  (englisch  Mutual Information):
$$I(X;Y) = H(X) + H(Y) - H(XY) = 0.469 + 0.994 - 1.371 = 0.092\ {\rm bit} \hspace{0.05cm},$$

Die Ergebnisse sind in nebenstehender Grafik zusammengefasst.

Anmerkung:  Äquivokation und Irrelevanz könnte man (allerdfings mit Mehraufwand) auch direkt aus den entsprechenden Wahrscheinlichkeitsfunktionen berechnen, zum Beispiel:

$$H(Y \vert X) = \hspace{-0.2cm} \sum_{(x, y) \hspace{0.05cm}\in \hspace{0.05cm}XY} \hspace{-0.2cm} P_{XY}(x,\hspace{0.05cm}y) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{P_{\hspace{0.05cm}Y\hspace{-0.01cm}\vert \hspace{0.03cm}X} (\hspace{0.05cm}y\hspace{0.03cm} \vert \hspace{0.05cm} x)}= p_{\rm Aa} \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{p_{\rm a\hspace{0.03cm}\vert \hspace{0.03cm}A} } + p_{\rm Ab} \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{p_{\rm b\hspace{0.03cm}\vert \hspace{0.03cm}A} } + p_{\rm Ba} \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{p_{\rm a\hspace{0.03cm}\vert \hspace{0.03cm}B} } + p_{\rm Bb} \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{p_{\rm b\hspace{0.03cm}\vert \hspace{0.03cm}B} } = 0.902 \ {\rm bit} \hspace{0.05cm}.$$


Betrachtetes Modell des Ternärkanals:
Rote Übergänge stehen für  $p_{\rm a\hspace{0.03cm}\vert \hspace{0.03cm}A} = p_{\rm b\hspace{0.03cm}\vert \hspace{0.03cm}B} = p_{\rm c\hspace{0.03cm}\vert \hspace{0.03cm}C} = q$  und blaue für  $p_{\rm b\hspace{0.03cm}\vert \hspace{0.03cm}A} = p_{\rm c\hspace{0.03cm}\vert \hspace{0.03cm}A} =\text{...}= p_{\rm b\hspace{0.03cm}\vert \hspace{0.03cm}C}= (1-q)/2$

$\text{Beispiel 3}$:  Nun betrachten wir ein Übertragungssystem mit  $M_X = M_Y = M=3$. 

(1)  Die Quellensymbole seien gleichwahrscheinlich:

$$P_X(X) = \big ( p_{\rm A},\ p_{\rm B},\ p_{\rm C} \big )= \big ( 1/3,\ 1/3,\ 1/3 \big )\hspace{0.30cm}\Rightarrow\hspace{0.30cm}H(X)={\rm log_2}\hspace{0.1cm}3 \approx 1.585 \ {\rm bit} \hspace{0.05cm}.$$

(2)  Das Kanalmodell ist symmetrisch   ⇒   auch die Sinkensymbole sind gleichwahrscheinlich:

$$P_Y(Y) = \big ( p_{\rm a},\ p_{\rm b},\ p_{\rm c} \big )= \big ( 1/3,\ 1/3,\ 1/3 \big )\hspace{0.30cm}\Rightarrow\hspace{0.30cm}H(Y)={\rm log_2}\hspace{0.1cm}3 \approx 1.585 \ {\rm bit} \hspace{0.05cm}.$$

(3)  Die Verbundwahrscheinlichkeiten ergeben sich wie folgt:

$$p_{\rm Aa}= p_{\rm Bb}= p_{\rm Cc}= q/M,$$
$$p_{\rm Ab}= p_{\rm Ac}= p_{\rm Ba}= p_{\rm Bc} = p_{\rm Ca}= p_{\rm Cb} = (1-q)/(2M)$$
$$\Rightarrow\hspace{0.30cm}H(XY) = 3 \cdot p_{\rm Aa} \cdot {\rm log_2}\hspace{0.1cm}\frac{1}{\hspace{0.1cm}p_{\rm Aa}\hspace{0.1cm} }+6 \cdot p_{\rm Ab} \cdot {\rm log_2}\hspace{0.1cm}\frac{1}{\hspace{0.1cm}p_{\rm Ab}\hspace{0.1cm} }= \ \text{...} \ = q \cdot {\rm log_2}\hspace{0.1cm}\frac{M}{q }+ (1-q) \cdot {\rm log_2}\hspace{0.1cm}\frac{M}{(1-q)/2 }.$$
Einige Ergebnisse zum  $\text{Beispiel 3}$

(4)  Für die Transinformation erhält man nach einigen Umformungen unter Berücksichtigung der Gleichung 

$$I(X;Y) = H(X) + H(Y) - H(XY)\text{:}$$
$$I(X;Y) = {\rm log_2}\ (M) - (1-q) -H_{\rm bin}(q).$$
  • Bei fehlerfreier Ternärübertragung  $(q=1)$  gilt  $I(X;Y) = H(X) = H(Y)={\rm log_2}\hspace{0.1cm}3$.
  • Mit  $q=0.8$  sinkt die Transinformaion schon auf  $I(X;Y) = 0.663$  und mit  $q=0.5$  auf  $0.085$  bit.
  • Der ungünstigste Fall aus informationstheoretischer Sicht ist  $q=1/3$  ⇒   $I(X;Y) = 0$.
  • Dagegen ist der aus der aus Sicht der Übertragungstheorie ungünstigste Fall  $q=0$  ⇒   „kein einziges Übertragungssymbol kommt richtig an”  aus informationstheoretischer Sicht gar nicht so schlecht.
  • Um dieses gute Ergebnis nutzen zu können, ist allerdings sendeseitig eine Kanalcodierung erforderlich.



Definition und Bedeutung der Kanalkapazität

Berechnet man die Transinformation  $I(X, Y)$  wie zuletzt im  $\text{Beispiel 2}$  ausgeführt,  so hängt diese nicht nur vom diskreten gedächtnislosen Kanal  (englisch:  Discrete Memoryless Channel,  kurz DMC)  ab, sondern auch von der Quellenstatistik   ⇒   $P_X(X)$  ab.  Ergo:   Die Transinformation  $I(X, Y)$  ist keine reine Kanalkenngröße.

$\text{Definition:}$  Die von  Claude E. Shannon  eingeführte  Kanalkapazität  (englisch:  Channel Capacity)  lautet gemäß seinem Standardwerk  [Sha48][1]:

$$C = \max_{P_X(X)} \hspace{0.15cm} I(X;Y) \hspace{0.05cm}.$$

Oft wird die Zusatzeinheit „bit/Kanalzugriff” hinzugefügt,  bei englischen Texten „bit/use”.  Da nach dieser Definition stets die bestmögliche Quellenstatistik zugrunde liegt,  hängt  $C$  nur von den Kanaleigenschaften   ⇒   $P_{Y \vert X}(Y \vert X)$ ab,  nicht jedoch von der Quellenstatistik   ⇒   $P_X(X)$. 


Shannon benötigte die Kanalbeschreibungsgröße  $C$  zur Formulierung des Kanalcodierungstheorems – eines der Highlights der von ihm begründeten Informationstheorie.

$\text{Shannons Kanalcodierungstheorem:}$ 

  • Zu jedem Übertragungskanal mit der Kanalkapazität  $C > 0$  existiert (mindestens) ein  $(k, n)$–Blockcode,  dessen (Block–)Fehlerwahrscheinlichkeit gegen Null geht,  so lange die Coderate  $R = k/n$  kleiner oder gleich der Kanalkapazität ist:   $R ≤ C.$
  • Voraussetzung hierfür ist allerdings,  dass für die Blocklänge dieses Codes gilt:   $n → ∞.$


$\text{Umkehrschluss von Shannons Kanalcodierungstheorem:}$ 

Ist die Rate  $R$  des verwendeten  $(n$, $k)$–Blockcodes größer als die Kanalkapazität  $C$,  so ist niemals eine beliebig kleine Blockfehlerwahrscheinlichkeit nicht erreichbar.


Informationsheoretischer Größen für
verschiedene  $p_{\rm A}$  und  $p_{\rm B}= 1- p_{\rm A}$

$\text{Beispiel 4}$:  Wir betrachten den gleichen diskreten gedächtnislosen Kanal wie im  $\text{Beispiel 2}$.  In diesem $\text{Beispiel 2}$  wurden die Symbolwahrscheinlichkeiten  $p_{\rm A} = 0.1$  und  $p_{\rm B}= 1- p_{\rm A}=0.9$  vorausgesetzt.  Damit ergab sich die Transinformation zu  $I(X;Y)= 0.092$  bit/Kanalzugriff   ⇒   siehe erste Zeile, vierte Spalte in der Tabelle.

Die  Kanalkapazität  ist die Transinformation  $I(X, Y)$  bei bestmöglichen Symbolwahrscheinlichkeiten  $p_{\rm A} = 0.55$  und  $p_{\rm B}= 1- p_{\rm A}=0.45$:

$$C = \max_{P_X(X)} \hspace{0.15cm} I(X;Y) = 0.284 \ \rm bit/Kanalzugriff \hspace{0.05cm}.$$

Aus der Tabelle erkennt man weiter  (auf die Zusatzeinheit „bit/Kanalzugriff„ verzichten wir im Folgenden):

  • Der Parameter  $p_{\rm A} = 0.1$  war sehr ungünstig gewählt, weil beim vorliegenden Kanal das Symbol  $\rm A$  mehr verfälscht wird als  $\rm B$.  Schon mit  $p_{\rm A} = 0.9$  ergibt sich ein etwas besserer Wert:  $I(X; Y)=0.130$.
  • Aus dem gleichen Grund liefert  $p_{\rm A} = 0.55$,  $p_{\rm B} = 0.45$  ein etwas besseres Ergebnis als gleichwahrscheinliche Symbole  $p_{\rm A} = p_{\rm B} =0.5$.
  • Je unsymmetrischer der Kanal ist, um so mehr weicht die optimale Wahrscheinlichkeitsfunktion  $P_X(X)$  von der Gleichverteilung ab.  Im Umkehrschluss:  Bei symmetrischem Kanal ergibt sich stets die Gleichverteilung.


Der Ternärkanal von  $\text{Beispiel 3}$  ist symmetrisch.  Deshalb ist hier  $P_X(X) = \big ( 1/3,\ 1/3,\ 1/3 \big )$  für jeden  $q$–Wert optimal, und die in der Ergebnistabelle angegebene Transinformation  $I(X;Y)$  ist gleichzeitig die Kanalkapazität  $C$.

Numerische Ermittlung der statistischen und informationstheoretischen Größen

mit einem Beispiel


Versuchsdurchführung

Exercises binomial fertig.png
  • Wählen Sie zunächst die Nummer  1  ...  ?  der zu bearbeitenden Aufgabe.
  • Eine Aufgabenbeschreibung wird angezeigt.  Die Parameterwerte sind angepasst.
  • Lösung nach Drücken von „Musterlösung”.
  • Bei allen Entropiewerten müsste die Einheit "bit/use" hizugefügt werden.
  • Die Nummer  0  entspricht einem „Reset”:  Gleiche Einstellung wie beim Programmstart.


(1)  Es gelte  $p_{\rm A} = p_{\rm B} = 0.5$  und  $p_{\rm b \vert A} = p_{\rm a \vert B} = 0.1$. Welches Kanalmodell liegt vor?  Wie lauten die Entropien  $H(X), \, H(Y)$  und die Transinformation  $I(X;\, Y)$?

  •   Betrachtet wird das BSC–Modell  (Binary Symmetric Channel).  Wegen  $p_{\rm A} = p_{\rm B} = 0.5$  gilt für die Quellen– und die Sinkenentropie:  $H(X) = H(Y) = 1$.
  •   Wegen  $p_{\rm b \vert A} = p_{\rm a \vert B} = 0.1$  sind auch Äqivokation und Irrelevanz gleich:  $H(X \vert Y) = H(Y \vert X) = H_{\rm bin}(p_{\rm b \vert A}) = H_{\rm bin}(0.1) =0.469$.
  •   Die Transinformation ist  $I(X;\, Y) = H(X) - H(X \vert Y)= 1-H_{\rm bin}(p_{\rm b \vert A}) = 0.531$  und die Verbundentropie ist  $H(XY) =1.469$.

(2)  Es gelte weiter  $p_{\rm b \vert A} = p_{\rm a \vert B} = 0.1$, aber nun ist die Symbolwahrscheinlichkeit  $p_{\rm A} = 0.9$.  Wie groß ist die Kapazität  $C_{\rm BSC}$  des BSC–Kanals mit  $p_{\rm b \vert A} = p_{\rm a \vert B}$?

Welches  $p_{\rm b \vert A} = p_{\rm a \vert B}$  führt zur größtmöglichen Kanalkapazität und welches  $p_{\rm b \vert A} = p_{\rm a \vert B}$  zur Kanalkapazität  $C_{\rm BSC}=0$?
  •   Die Kapazität  $C_{\rm BSC}$  ist gleich der maximalen Transinformation  $I(X;\, Y)$  unter Berücksichtigung der optimalen Symbolwahrscheinlichkeiten.
  •   Aufgrund der Symmetrie des des BSC–Modells  führen gleichwahrscheinliche Symbole  $(p_{\rm A} = p_{\rm B} = 0.5)$  zum Optimum   ⇒   $C_{\rm BSC}=0.531$.
  •   Am besten ist der ideale Kanal  $(p_{\rm b \vert A} = p_{\rm a \vert B} = 0)$  ⇒   $C_{\rm BSC}=1$.  Der schlechteste BSC–Kanal liegt durch  $p_{\rm b \vert A} = p_{\rm a \vert B} = 0.5$  fest   ⇒   $C_{\rm BSC}=0$.
  •   Aber auch mit   $p_{\rm b \vert A} = p_{\rm a \vert B} = 1$  ergibt sich  $C_{\rm BSC}=1$.  Hier Fall werden alle Symbole invertiert, was informationstheoretisch das gleiche ist wie  $\langle Y_n \rangle = \langle X_n \rangle$.

(3)  Es gelte  $p_{\rm A} = p_{\rm B} = 0.5$,  $p_{\rm b \vert A} = 0.05$  und  $ p_{\rm a \vert B} = 0.4$.  Interpretieren Sie die Ergebnisse im Vergleich zum Versuch  (1)  sowie zum  $\text{Beispiel 2}$  im Theorieteil.

  •   Im Gegensatz zum Versuch  (1)  liegt hier kein BSC-Kanal vor.  Vielmehr ist der hier betrachtete Kanal unsymmetrisch:  $p_{\rm b \vert A} \ne p_{\rm a \vert B}$.
  •   Gemäß  $\text{Beispiel 2}$  gilt für  $p_{\rm A} = 0.1,\ p_{\rm B} = 0.9$:     $H(X)= 0.469$,  $H(Y)= 0.994$,  $H(X \vert Y)=0.377$,  $H(Y \vert X)=0.902$,  $I(X;\ Y)=0.092$.
  •   Nun gilt  $p_{\rm A} = p_{\rm B} = 0.5$  und man erhält  $H(X)= 1.000$,  $H(Y)= 0.910$,  $H(X \vert Y)=0.719$,  $H(Y \vert X)=0.629$,  $I(X;\ Y)=0.281$.
  •   Alle Ausgabewerte hängen signifikant von  $p_{\rm A}$  und  $p_{\rm B}=1-p_{\rm A}$  ab mit Ausnahme der bedingten Wahrscheinlichkeiten  ${\rm Pr}(Y \vert X)\ \in \ \{\hspace{0.05cm}0.95,\ 0.05,\ 0.4,\ 0.6\hspace{0.05cm} \}$.

(4)  Es gelte weiter  $p_{\rm A} = p_{\rm B}$,  $p_{\rm b \vert A} = 0.05$,  $ p_{\rm a \vert B} = 0.4$.  Welche Unterschiede erkennen Sie hinsichtlich analytischer Berechnung und „Simulation”  $(N=10000)$.

  •   Die Verbundwahrscheinlichkeiten sind  $p_{\rm Aa} =0.475$,  $p_{\rm Ab} =0.025$,  $p_{\rm Ba} =0.200$, $p_{\rm Bb} =0.300$.  Bei der Simulation Approximation durch relative Häufigkeiten:
  •   Zum Beispiel für  $N=10000$:  $h_{\rm Aa} =0.4778$,  $h_{\rm Ab} =0.0264$,  $h_{\rm Ba} =0.2039$, $h_{\rm Bb} =0.2919$.  Nach Drücken  „Neue Folge”  etwas andere Werte.
  •   Für alle nachfolgenden Berechnungen kein prinzieller Unterschied zwischen Theorie und Simulation, außer  $p \to h$.  Beispiele: 
  •   $p_A = 0.5 \to h_{\rm A}=h_{\rm Aa} + h_{\rm Ab} =0.5042$,  $p_b = 0.325 \to h_{\rm b}=h_{\rm Ab} + h_{\rm Ab} =0.318$,  $p_b|A = 0.05 \to h_{\rm b|A}=h_{\rm Ab}/h_{\rm A} =0.0264/0.5042= 0.0524$, 
  •   $p_{\rm A|b} = 0.0769 \to h_{\rm A|b}=h_{\rm Ab}/h_{\rm b} =0.0264/0.318= 0.0830$.  Dadurch liefert diese Simulation  $I_{\rm Sim}(X;\ Y)=0.269$  anstelle von  $I(X;\ Y)=0.281$.

(5)  Einstellung gemäß  (4).  Wie underscheidet sich  $I_{\rm Sim}(X;\ Y)$  für  $N=10^3$,  $10^4$,  $10^5$  von  $I(X;\ Y) = 0.281$ ?  Jeweils Mittelung über zehn Realisierungen.

  •   $N=10^3$:   $0.232 \le I_{\rm Sim} \le 0.295$,   Mittelwert:  $0.263$   |   $N=10^4$:   $0.267 \le I_{\rm Sim} \le 0.293$   MW:  $0.279$   |   $N=10^5$:   $0.280 \le I_{\rm Sim} \le 0.285$   MW:  $0.282$.
  •   Mit  $N=10^6$  unterscheidet sich bei diesem Kanal das Simulationsergebnis vom theoretischen Wert um weniger als  $\pm 0.001$.


(3)  Es gelten weiter die Einstellungen von (1). Wie unterscheiden sich der Mittelwert $m_1$ und die Streuung $\sigma$ der beiden Binomialverteilungen?

Welche Unterschiede ergeben sich zwischen beiden Verteilungen hinsichtlich Mittelwert $m_1$ und Varianz $\sigma^2$?


$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}\text{Mittelwert:}\hspace{0.2cm}m_\text{1} = I \cdot p\hspace{0.3cm} \Rightarrow\hspace{0.3cm} m_\text{1, Blau} = 5 \cdot 0.4\underline{ = 2 =} \ m_\text{1, Rot} = 10 \cdot 0.2; $

$\hspace{1.85cm}\text{Streuung:}\hspace{0.4cm}\sigma = \sqrt{I \cdot p \cdot (1-p)} = \sqrt{m_1 \cdot (1-p)}\hspace{0.3cm}\Rightarrow\hspace{0.3cm} \sigma_{\rm Blau} = \sqrt{2 \cdot 0.6} =1.095 < \sigma_{\rm Rot} = \sqrt{2 \cdot 0.8} = 1.265.$

(4)  Setzen Sie Blau: Binomialverteilung $(I=15, p=0.3)$ und Rot: Poissonverteilung $(\lambda=4.5)$.

Welche Unterschiede ergeben sich zwischen beiden Verteilungen hinsichtlich Mittelwert $m_1$ und Varianz $\sigma^2$?


$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}\text{Beide Verteilungern haben gleichen Mittelwert:}\hspace{0.2cm}m_\text{1, Blau} = I \cdot p\ = 15 \cdot 0.3\hspace{0.15cm}\underline{ = 4.5 =} \ m_\text{1, Rot} = \lambda$;

$\hspace{1.85cm} \text{Binomialverteilung: }\hspace{0.2cm} \sigma_\text{Blau}^2 = m_\text{1, Blau} \cdot (1-p)\hspace{0.15cm}\underline { = 3.15} \le \text{Poissonverteilung: }\hspace{0.2cm} \sigma_\text{Rot}^2 = \lambda\hspace{0.15cm}\underline { = 4.5}$;

(5)  Es gelten die Einstellungen von (4). Wie groß sind die Wahrscheinlichkeiten ${\rm Pr}(z \gt 10)$ und ${\rm Pr}(z \gt 15)$?


$\hspace{1.0cm}\Rightarrow\hspace{0.3cm} \text{Binomial: }\hspace{0.2cm} {\rm Pr}(z \gt 10) = 1 - {\rm Pr}(z \le 10) = 1 - 0.9993 = 0.0007;\hspace{0.3cm} {\rm Pr}(z \gt 15) = 0 \ {\rm (exakt)}$.

$\hspace{1.85cm}\text{Poisson: }\hspace{0.2cm} {\rm Pr}(z \gt 10) = 1 - 0.9933 = 0.0067;\hspace{0.3cm}{\rm Pr}(z \gt 15) \gt 0 \ ( \approx 0)$

$\hspace{1.85cm} \text{Näherung: }\hspace{0.2cm}{\rm Pr}(z \gt 15) \ge {\rm Pr}(z = 16) = \lambda^{16}/{16!}\approx 2 \cdot 10^{-22}$.

(6)  Es gelten weiter die Einstellungen von (4). Mit welchen Parametern ergeben sich symmetrische Verteilungen um $m_1$?


$\hspace{1.0cm}\Rightarrow\hspace{0.3cm} \text{Binomialverung mit }p = 0.5\text{: }p_\mu = {\rm Pr}(z = \mu)\text{ symmetrisch um } m_1 = I/2 = 7.5 \ ⇒ \ p_μ = p_{I–μ}\ ⇒ \ p_8 = p_7, \ p_9 = p_6, \text{usw.}$

$\hspace{1.85cm}\text{Die Poissonverteilung wird dagegen nie symmetrisch, da sie sich bis ins Unendliche erstreckt!}$

Zur Handhabung des Applets

Handhabung binomial.png

    (A)     Vorauswahl für blauen Parametersatz

    (B)     Parametereingabe $I$ und $p$ per Slider

    (C)     Vorauswahl für roten Parametersatz

    (D)     Parametereingabe $\lambda$ per Slider

    (E)     Graphische Darstellung der Verteilungen

    (F)     Momentenausgabe für blauen Parametersatz

    (G)     Momentenausgabe für roten Parametersatz

    (H)     Variation der grafischen Darstellung


$\hspace{1.5cm}$„$+$” (Vergrößern),

$\hspace{1.5cm}$ „$-$” (Verkleinern)

$\hspace{1.5cm}$ „$\rm o$” (Zurücksetzen)

$\hspace{1.5cm}$ „$\leftarrow$” (Verschieben nach links), usw.

    ( I )     Ausgabe von ${\rm Pr} (z = \mu)$ und ${\rm Pr} (z \le \mu)$

    (J)     Bereich für die Versuchsdurchführung

Andere Möglichkeiten zur Variation der grafischen Darstellung:

  • Gedrückte Shifttaste und Scrollen: Zoomen im Koordinatensystem,
  • Gedrückte Shifttaste und linke Maustaste: Verschieben des Koordinatensystems.

Über die Autoren

Dieses interaktive Berechnungstool wurde am Lehrstuhl für Nachrichtentechnik der Technischen Universität München konzipiert und realisiert.

Nochmalige Aufrufmöglichkeit des Applets in neuem Fenster

Applet in neuem Tab öffnen

  1. Shannon, C.E.: A Mathematical Theory of Communication. In: Bell Syst. Techn. J. 27 (1948), S. 379-423 und S. 623-656.