Aufgaben:Aufgabe 3.5Z: Nochmals Kullback-Leibler-Distanz: Unterschied zwischen den Versionen
Safwen (Diskussion | Beiträge) |
Safwen (Diskussion | Beiträge) |
||
Zeile 115: | Zeile 115: | ||
'''5.''' Richtig ist Nein, wie am Beispiel $N = 100$ gezeigt werden soll: | '''5.''' Richtig ist Nein, wie am Beispiel $N = 100$ gezeigt werden soll: | ||
+ | |||
+ | $$D(P_X||P_Y) = \sum\limits_{\mu=1}^M P_X(\mu) . log_2 \frac{P_X(\mu)}{P_Y(\mu)} =$$ | ||
+ | |||
+ | $$ = 0.24 . log_2 \frac{0.24}{0.25} +0.16. log_2 \frac{16}{0.25} +2 . 0,30 . log_2 \frac{0.30}{0.25} = 0.0407 (bit)$$ | ||
+ | In der Teilaufgabe (c) haben wir stattdessen $D(P_X||P_Y)$ = 0.0442 erhalten. Das bedeutet auch: Der Name „Distanz” ist etwas irreführend. Danach würde man eigentlich $D(P_Y||P_X)$ = $D(P_X||P_Y)$ erwarten. | ||
+ | |||
'''6.''' | '''6.''' | ||
'''7.''' | '''7.''' |
Version vom 25. November 2016, 19:40 Uhr
Die Wahrscheinlichkeitsfunktion lautet:
$$P_Y(X) = [\hspace{0.03cm}0.25\hspace{0.03cm}, \hspace{0.03cm} 0.25\hspace{0.03cm},\hspace{0.03cm} 0.25 \hspace{0.03cm}, \hspace{0.03cm} 0.25\hspace{0.03cm}]\hspace{0.05cm}$$ Die Zufallsgröße $X$ ist also gekennzeichnet
- durch den Symbolumfang $M=4$,
- mit gleichen Wahrscheinlichkeiten.
Die Zufallsgröße $Y$ ist stets eine Näherung für $X$. Sie wurde per Simulation aus einer Gleichverteilung gewonnen, wobei jeweils nur $N$ Zufallswerte ausgewertet wurden. Das heißt: $P_Y(1)$,...,$P_Y(4)$ sind im herkömmlichen Sinn keine Wahrscheinlichkeiten. Sie beschreiben vielmehr relative Häufigkeiten.
Das Ergebnis der sechsten Versuchsreihe (mit $N=1000$) ird demnach durch die folgende Wahrscheinlichkeitsfunktion zusammengefasst:
$$P_Y(X) = [\hspace{0.05cm}0.225\hspace{0.05cm}, \hspace{0.05cm} 0.253\hspace{0.05cm},\hspace{0.05cm} 0.250 \hspace{0.05cm}, \hspace{0.05cm} 0.272\hspace{0.05cm}] \hspace{0.05cm}$$ Bei dieser Schreibweise ist bereits berücksichtigt, dass die Zufallsgrößen $X$ und $Y$ auf dem gleichen Alphabet $X =$ {1, 2, 3, 4} basieren.
Mit diesen Voraussetzungen gilt für die relative Entropie (englisch: Informational Divergence) zwischen den Wahrscheinlichkeitsfunktionen $P_X(.)$ und $P_Y(.)$ :
$D( P_X || P_Y) = E_X [ log_2 \frac{P_X(X)}{P_Y(Y)}] = \sum\limits_{\mu=1}^M P_X(\mu) . log_2 \frac{P_X(\mu)}{P_Y(\mu)}$
Man bezeichnet $D( P_X || P_Y)$ als Kullback–Leibler–Distanz. Diese ist ein Maß für die Ähnlichkeit zwischen den beiden Wahrscheinlichkeitsfunktionen $P_X(.)$ und $P_Y(.)$. Die Erwartungswertbildung geschieht hier hinsichtlich der (tatsächlich gleichverteilten) Zufallsgröße $X$. Dies wird durch die Nomenklatur $E_X[.]$ angedeutet.
Eine zweite Form der Kullback–Leibler–Distanz ergibt sich durch die Erwartungswertbildung hinsichtlich der Zufallsgröße $Y \Rightarrow E_Y[.]$:
$D( P_Y || P_X) = E_Y [ log_2 \frac{P_Y(Y)}{P_Y(Y)}] = \sum\limits_{\mu=1}^M P_Y(\mu) . log_2 \frac{P_Y(\mu)}{P_X(\mu)}$
Hinweis: Die Aufgabe bezieht sich auf das Kapitel 3.1 dieses Buches. Die Angaben der Entropie $H(Y)$ und der Kullback–Leibler–Distanz $D( P_X || P_Y)$ in obiger Grafik sind in „bit” zu verstehen. die mit „???" versehenen Felder sollen von Ihnen in dieser Aufgabe ergänzt werden.
Fragebogen
Musterlösung
1.Bei gleichen Wahrscheinlichkeiten gilt mit $M = 4$ :
$H(X) = log_2 M = 2 (bit)$
2. Die Wahrscheinlichkeiten für die empirisch ermittelten Zufallsgrößen $Y$ weichen im Allgemeinen (nicht immer!) von der Gleichverteilung um so mehr ab, je kleiner der Parameter $N$ ist. Man erhält
- $N = 1000 \Rightarrow P_Y(Y) = [0.225, 0.253, 0.250, 0.272]$ :
$H(Y) = 0.225 . log_2 \frac{1}{0.225} +0.253. log_2 \frac{1}{0.253} + 0.250 . log_2 \frac{1}{0.250}+ 0.272 . log_2 \frac{1}{0.272} = 1.9968 (bit)$
- $N = 100\Rightarrow P_Y(Y) = [0.24, 0.16, 0.30, 0.30]$ :
$H(Y) =$......$= 1.9410$
- $N = 10 \Rightarrow P_Y(Y) = [0.5, 0.1, 0.3, 0.1]$:
$H(Y) =$......$= 1.6855$
3. Die Gleichung für die gesuchte Kullback–Leibler–Distanz lautet:
$$D(P_X||P_Y) = \sum\limits_{\mu=1}^4 P_X(\mu) . log_2 \frac{P_X(\mu)}{P_Y(\mu)} =$$
$$= \frac{1/4}{lg(2)} .[lg \frac{0.25}{P_Y(1)}+\frac{0.25}{P_Y(2)}+\frac{0.25}{P_Y(3)} + \frac{0.25}{P_Y(4)}] =$$
$$=\frac{1}{4 . lg(2)} . [lg \frac{0.25^4}{P_Y(1) . P_Y(2) . P_Y(3) . P_Y(4)}]$$ Der Logarithmus zur Basis 2 $\Rightarrow log_2(.)$ wurde zur einfachen Nutzung des Taschenrechners durch den Zehnerlogarithmus $\Rightarrow lg(.)$ ersetzt. Man erhält die folgenden numerischen Ergebnisse:
- $N=1000$ :
$$D(P_X||P_Y)=\frac{1}{4 . lg(2)} . [lg \frac{0.25^4}{0,225 . 0,253 . 0,250 . 0,272}] = 3,28 . 10^{-3} (bit)$$
- $N=100$ :
$$D(P_X||P_Y)=\frac{1}{4 . lg(2)} . [lg \frac{0.25^4}{0,24 . 0,16 . 0,30 . 0,30}] = 4,42 . 10^{-2} (bit)$$
- $N=100$ :
$$D(P_X||P_Y)=\frac{1}{4 . lg(2)} . [lg \frac{0.25^4}{0,5 . 0,1. 0,3 . 0,1}] = 3,45. 10^{-1} (bit)$$
5. Richtig ist Nein, wie am Beispiel $N = 100$ gezeigt werden soll:
$$D(P_X||P_Y) = \sum\limits_{\mu=1}^M P_X(\mu) . log_2 \frac{P_X(\mu)}{P_Y(\mu)} =$$
$$ = 0.24 . log_2 \frac{0.24}{0.25} +0.16. log_2 \frac{16}{0.25} +2 . 0,30 . log_2 \frac{0.30}{0.25} = 0.0407 (bit)$$ In der Teilaufgabe (c) haben wir stattdessen $D(P_X||P_Y)$ = 0.0442 erhalten. Das bedeutet auch: Der Name „Distanz” ist etwas irreführend. Danach würde man eigentlich $D(P_Y||P_X)$ = $D(P_X||P_Y)$ erwarten.
6. 7.