Aufgaben:Aufgabe 4.4: Zum Quantisierungsrauschen: Unterschied zwischen den Versionen
Safwen (Diskussion | Beiträge) |
|||
Zeile 17: | Zeile 17: | ||
$$\rho_{\rm Q} = \frac{P_{\rm S}}{P_{\rm Q}}\hspace{0.05cm},$$ | $$\rho_{\rm Q} = \frac{P_{\rm S}}{P_{\rm Q}}\hspace{0.05cm},$$ | ||
das meist in dB angegeben wird. | das meist in dB angegeben wird. | ||
+ | |||
+ | |||
+ | ''Hinweise:'' | ||
+ | *Die Aufgabe gehört zum Kapitel [[Modulationsverfahren/Pulscodemodulation|Pulscodemodulation]]. | ||
+ | *Bezug genommen wird insbesondere auf die Seiten [[Modulationsverfahren/Pulscodemodulation#Nat.C3.BCrliche_und_diskrete_Abtastung|Natürliche und diskrete Abtastung]]. | ||
+ | *Das abgetastete Quellensignal wird mit $q_{\rm A}(t)$ bezeichnet und dessen Spektralfunktion mit $Q_{\rm A}(f)$. Die Abtastung erfolgt stets bei $ν · T_{\rm A}$. | ||
+ | *Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein. | ||
+ | |||
'''Hinweis:''' Die Aufgabe bezieht sich auf das [http://www.lntwww.de/Modulationsverfahren/Pulscodemodulation Kapitel 4.1]. | '''Hinweis:''' Die Aufgabe bezieht sich auf das [http://www.lntwww.de/Modulationsverfahren/Pulscodemodulation Kapitel 4.1]. |
Version vom 20. Juli 2017, 10:35 Uhr
Zur Berechnung der Quantisierungsrauschleistung $P_Q$ gehen wir von einem periodischen sägezahnförmigen Quellensignal $q(t)$ mit dem Wertebereich $±q_{max}$ und der Periodendauer $T_0$ aus.
Im mittleren Zeitbereich $–T_0/2 ≤ t ≤ T_0/2$ gilt: $$q(t) = q_{\rm max} \cdot \left ( {2 \cdot t}/{T_0} \right ).$$ Dessen Leistung wird hier mit $P_S$ bezeichnet.
Dieses Signal wird entsprechend der Grafik mit $M = 6$ Stufen quantisiert. Der lineare Quantisierer ist für den Amplitudenbereich $±Q_{max}$ ausgelegt, so dass jedes Quantisierungsintervall die Breite $Δ = 2/M · Q_{max}$ aufweist. Die Grafik zeigt diesen Sachverhalt für $Q_{max} = q_{max} = 6 V$. Von diesen Zahlenwerten soll bis einschließlich Teilaufgabe e) ausgegangen werden.
Die so genannte Quantisierungsrauschleistung ist als der quadratische Mittelwert des Differenzsignals $ε(t) = q_Q(t) – q(t)$ definiert. Es gilt $$P_{\rm Q} = \frac{1}{T_0' } \cdot \int_{0}^{T_0'}\varepsilon(t)^2 \hspace{0.05cm}{\rm d}t \hspace{0.05cm},$$ wobei die Zeit $T_0'$ geeignet zu wählen ist. Als Quantisierungs–SNR bezeichnet man das Verhältnis $$\rho_{\rm Q} = \frac{P_{\rm S}}{P_{\rm Q}}\hspace{0.05cm},$$ das meist in dB angegeben wird.
Hinweise:
- Die Aufgabe gehört zum Kapitel Pulscodemodulation.
- Bezug genommen wird insbesondere auf die Seiten Natürliche und diskrete Abtastung.
- Das abgetastete Quellensignal wird mit $q_{\rm A}(t)$ bezeichnet und dessen Spektralfunktion mit $Q_{\rm A}(f)$. Die Abtastung erfolgt stets bei $ν · T_{\rm A}$.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
Hinweis: Die Aufgabe bezieht sich auf das Kapitel 4.1.
Fragebogen
Musterlösung
2. Wir gehen hier von $Q_{max} = q_{max} = 6 V$ aus. Damit ergibt sich das sägezahnförmige Fehlersignal $ε(t)$ zwischen $±1V$ und der Periodendauer $T0' = T_0/6$.
Richtig sind also die Lösungsvorschläge 1, 3 und.4.
3. Das Fehlersignal $ε(t)$ verläuft ebenso wie $q(t)$ sägezahnförmig. Somit eignet sich zur Berechnung des quadratischen Mittelwertes dieselbe Gleichung wie in Teilaufgabe a). Zu beachten ist die um den Faktor M kleinere Amplitude, während die unterschiedliche Periodendauer für die Mittelung keine Rolle spielt:
$$P_{\rm Q} = \frac{P_{\rm S}}{M^2} = \frac{12\,{\rm V}^2}{36}\hspace{0.15cm}\underline {= 0.333\,{\rm V}^2 }\hspace{0.05cm}.$$
4. Die Ergebnisse der Teilaufgaben a) und c) führen zum Quantisierungs–SNR: $$\rho_{\rm Q} = \frac{P_{\rm S}}{P_{\rm Q}} = M^2 = 36 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm Q}\hspace{0.15cm}\underline { =15.56\,{\rm dB}} \hspace{0.05cm}.$$
5. Mit $M = 2^N$ erhält man allgemein: $$ \rho_{\rm Q} = M^2 = 2^{2N} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm Q} =20 \cdot {\rm lg}\hspace{0.1cm}(2)\cdot N \hspace{0.15cm}\underline {\approx 6.02\,{\rm dB}} \cdot N .$$ Daraus ergeben sich die gesuchten Sonderfälle: $$N = 8:\hspace{0.2cm} 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm Q} \hspace{0.15cm}\underline {= 48.16\,{\rm dB}}\hspace{0.05cm},$$ $$N = 16:\hspace{0.2cm} 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm Q} \hspace{0.15cm}\underline { = 96.32\,{\rm dB}}\hspace{0.05cm}.$$
6. Alle diese Voraussetzungen müssen erfüllt sein. Bei nichtlinearer Quantisierung gilt $ρ_Q = M^2$ nicht. Bei einer anderen Amplitudenverteilung als der Gleichverteilung ist $ρ_Q = M^2$ ebenfalls nur eine Näherung, die jedoch meist in Kauf genommen wird. Ist $Q_{max} < q_{max}$, so kommt es zu einem unzulässigen Abschneiden der Spitzen, während mit $Q_{max} > q_{max}$ die Quantisierungsintervalle größer sind als erforderlich.
Die Grafik zeigt die Fehlersignale $ε(t)$ für $Q_{max} > q_{max}$ (links) und $Q_{max} < q_{max}$ (rechts). In beiden Fällen ergibt sich eine deutlich größere Quantisierungsrauschleistung als unter Punkt c) berechnet.