Aufgaben:Aufgabe 4.4Z: Störabstand bei PCM: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 28: Zeile 28:
 
$N_a$ = { 8 3% }  
 
$N_a$ = { 8 3% }  
  
{Wieviele Bit pro Abtastwert müsste man ver
+
{Wieviele Bit pro Abtastwert müsste man verwenden, damit $10 · lg ρ_υ > 64 dB$ (Musikqualität) erreicht wird?
 
|type="{}"}
 
|type="{}"}
 
$N_b$= { 11 3%  }  
 
$N_b$= { 11 3%  }  
  
{  
+
{Welche (logarithmierte) Leistungskenngröße $ξ_{40dB}$ ist erforderlich, damit bei 8–Bit–PCM der Sinkenstörabstand gleich 40 dB ist?
 +
|type="{}"}
 +
$10 · lg ξ_{40 dB}$= { 10 3% } $dB$
 +
 
 +
{Um welchen Faktor könnte man bei PCM die Sendeleistung gegenüber der AM reduzieren, um trotzdem $10 · lg ρ_υ = 40 dB$ zu erreichen?
 +
|type="{}"}
 +
$K_{AM → PCM}$ = { 1000 3% }
 +
 
 +
{Welche Bitfehlerwahrscheinlichkeit ergibt sich für $10 · lg ξ = 6 dB$?
 +
|type="{}"}
 +
$N = N_a:  p_B$ = { 0.025 3% }
 +
 
 +
{Welches SNR würde sich bei gleichem $ξ$ mit einer 3–Bit–PCM ergeben?
 +
|type="{}"}
 +
$N = 3:  10 · lg ρ_υ$ = { 15.9 3% } $dB$
  
 
</quiz>
 
</quiz>
Zeile 38: Zeile 52:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''
+
'''1.''' Der horizontale Abschnitt der PCM–Kurve wird allein durch das Quantisierungsrauschen bestimmt. Hier gilt mit der Quantisierungsstufenzahl $M = 2^N$:
'''2.'''
+
$$ \rho_{v} (\xi \rightarrow \infty) = \rho_{\rm Q} = M^2 = 2^{2N} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{v} \approx 6\,{\rm dB} \cdot N\hspace{0.05cm}.$$
'''3.'''
+
Aus dem ablesbaren Störabstand $10 · lg ρ_υ ≈ 48 dB$ folgt daraus $N = 8 Bit$ pro Abtastwert und für die Quantisierungsstufenzahl $M = 256$.
'''4.'''
+
 
'''5.'''
+
 
'''6.'''
+
'''2.''' Aus der obigen Näherung erhält man für $N = 11  ⇒  M = 2048$ den Störabstand $66 dB$. Mit $N = 10 ⇒ M = 1024$ erreicht man nur ca. $60 dB$. Bei der Compact Disc (CD) werden die PCM–Parameter $N = 16  ⇒  M = 65536  ⇒  10 · lg ρ_υ > 96 dB$ verwendet.
'''7.'''
+
 
 +
 
 +
'''3.''' Bei Zweiseitenband–Amplitudenmodulation wären hierfür $10 · lg ξ = 40 dB$ erforderlich. Wie aus der Grafik auf der Angabenseite hervorgeht, ist dieser Abszissenwert für die vorgegebene PCM um $30 dB$ geringer  ⇒  $10 · lg ξ_·{40 dB} = 10 dB$.
 +
 
 +
 
 +
'''4.''' Der logarithmische Wert $30 dB$ entspricht einer um den $Faktor 10^3 = 1000$ reduzierten Leistung.
 +
 
 +
 
 +
'''5.''' Aus der Grafik auf der Angabenseite erkennt man, dass der Abszissenwert $10 · lg ξ = 6 dB$ den Störabstand $20 dB$ zur Folge hat. Aus $10 · lg ρ_υ = 20 dB$ folgt $ρ_υ = 100$ und damit weiter (mit $N = 8$):
 +
$$\rho_{\upsilon}= \frac{1}{ 2^{-2N } + 4 \cdot p_{\rm B}} \approx \frac{1}{ 1.5 \cdot 10^{-5} + 4 \cdot p_{\rm B}} = 100$$
 +
$$\Rightarrow \hspace{0.3cm} p_{\rm B} = \frac{0.01 - 1.5 \cdot 10^{-5}}{ 4} \hspace{0.15cm}\underline {\approx 0.025} \hspace{0.05cm}.$$
 +
 
 +
'''6.'''Bei gleichem $ξ$ kann wieder mit der Bitfehlerwahrscheinlichkeit $p_B = 0.025$ gerechnet werden. Damit erhält man mit $N = 3$ (Bit pro Abtastwert)
 +
$$\rho_{\upsilon}= \frac{1}{ 2^{-6 } + 4 \cdot p_{\rm B}} = \frac{1}{ 0.015625 + 0.01} \approx 39 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}10 \cdot {\rm lg} \hspace{0.15cm}\rho_{\upsilon}\hspace{0.15cm}\underline {\approx 15.9\,{\rm dB}} \hspace{0.05cm}.$$
 +
Bei 3 Bit pro Abtastwert ist die Quantisierungsrauschleistung ($P_Q = 0.015625$) schon größer als die Fehlerrauschleistung ($P_F = 0.01$). Durch Erhöhung der Sendeleistung könnte wegen der Quantisierung der Sinkenstörabstand maximal 18 dB betragen, wenn keine Bitfehler vorkommen ($P_F = 0$).
 +
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Version vom 4. Januar 2017, 17:38 Uhr

P ID1619 Mod Z 4 4.png

Die Grafik zeigt den Sinken–Störabstand $10 · lg ρ_υ$ bei Pulscodemodulation (PCM) im Vergleich zur analogen Zweiseitenband–Amplitudenmodulation, abgekürzt mit ZSB–AM. Für letztere gilt $ρ_υ = ξ$, wobei $$\xi = \frac{\alpha^2 \cdot P_{\rm S}}{N_0 \cdot f_{\rm N}} \hspace{0.05cm}.$$ folgende Systemparameter zusammenfasst:

  • den frequenzunabhängigen Dämpfungsfaktor $α$ des Übertragungskanals,
  • die Leistung $P_S$ des Sendsignals $s(t)$, auch kurz Sendeleistung genannt,
  • die Nachrichtenfrequenz $f_N$ (Bandbreite) des cosinusförmigen Quellensignals $q(t)$,
  • die Rauschleistungsdichte $N_0$ des AWGN–Rauschens.


Für das PCM–System wurde auf der Seite Einfluss von Übertragungsfehlern (4) folgende Näherung für das Sinken–SNR angegeben, die auch Bitfehler aufgrund des AWGN–Rauschens berücksichtigt: $$ \rho_{\upsilon}= \frac{1}{ 2^{-2N } + 4 \cdot p_{\rm B}} \hspace{0.05cm}.$$ Hierbei bezeichnet $N$ die Anzahl der Bit pro Abtastwert und pB die Bitfehlerwahrscheinlichkeit. Da $ξ$ bei digitaler Modulation auch als die Signalenergie pro Bit bezogen auf die Rauschleistungsdichte ($E_B/N_0$) interpretiert werden kann, gilt mit dem komplementären Gaußschen Fehlersignal $Q(x)$ näherungsweise: $$ p_{\rm B}= {\rm Q} \left ( \sqrt{2 \xi }\right ) \hspace{0.05cm}.$$ Hinweis: Die Aufgabe bezieht sich auf das Kapitel 4.1 Bei der hier betrachteten PCM handelt es sich um die PCM 30/32, deren Systemparameter zum Beispiel in der Aufgabe A4.1 angegeben sind.


Fragebogen

1

Wieviele Bit pro Abtastwert verwendet das betrachtete PCM–System?

$N_a$ =

2

Wieviele Bit pro Abtastwert müsste man verwenden, damit $10 · lg ρ_υ > 64 dB$ (Musikqualität) erreicht wird?

$N_b$=

3

Welche (logarithmierte) Leistungskenngröße $ξ_{40dB}$ ist erforderlich, damit bei 8–Bit–PCM der Sinkenstörabstand gleich 40 dB ist?

$10 · lg ξ_{40 dB}$=

$dB$

4

Um welchen Faktor könnte man bei PCM die Sendeleistung gegenüber der AM reduzieren, um trotzdem $10 · lg ρ_υ = 40 dB$ zu erreichen?

$K_{AM → PCM}$ =

5

Welche Bitfehlerwahrscheinlichkeit ergibt sich für $10 · lg ξ = 6 dB$?

$N = N_a: p_B$ =

6

Welches SNR würde sich bei gleichem $ξ$ mit einer 3–Bit–PCM ergeben?

$N = 3: 10 · lg ρ_υ$ =

$dB$


Musterlösung

1. Der horizontale Abschnitt der PCM–Kurve wird allein durch das Quantisierungsrauschen bestimmt. Hier gilt mit der Quantisierungsstufenzahl $M = 2^N$: $$ \rho_{v} (\xi \rightarrow \infty) = \rho_{\rm Q} = M^2 = 2^{2N} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{v} \approx 6\,{\rm dB} \cdot N\hspace{0.05cm}.$$ Aus dem ablesbaren Störabstand $10 · lg ρ_υ ≈ 48 dB$ folgt daraus $N = 8 Bit$ pro Abtastwert und für die Quantisierungsstufenzahl $M = 256$.


2. Aus der obigen Näherung erhält man für $N = 11 ⇒ M = 2048$ den Störabstand $66 dB$. Mit $N = 10 ⇒ M = 1024$ erreicht man nur ca. $60 dB$. Bei der Compact Disc (CD) werden die PCM–Parameter $N = 16 ⇒ M = 65536 ⇒ 10 · lg ρ_υ > 96 dB$ verwendet.


3. Bei Zweiseitenband–Amplitudenmodulation wären hierfür $10 · lg ξ = 40 dB$ erforderlich. Wie aus der Grafik auf der Angabenseite hervorgeht, ist dieser Abszissenwert für die vorgegebene PCM um $30 dB$ geringer ⇒ $10 · lg ξ_·{40 dB} = 10 dB$.


4. Der logarithmische Wert $30 dB$ entspricht einer um den $Faktor 10^3 = 1000$ reduzierten Leistung.


5. Aus der Grafik auf der Angabenseite erkennt man, dass der Abszissenwert $10 · lg ξ = 6 dB$ den Störabstand $20 dB$ zur Folge hat. Aus $10 · lg ρ_υ = 20 dB$ folgt $ρ_υ = 100$ und damit weiter (mit $N = 8$): $$\rho_{\upsilon}= \frac{1}{ 2^{-2N } + 4 \cdot p_{\rm B}} \approx \frac{1}{ 1.5 \cdot 10^{-5} + 4 \cdot p_{\rm B}} = 100$$ $$\Rightarrow \hspace{0.3cm} p_{\rm B} = \frac{0.01 - 1.5 \cdot 10^{-5}}{ 4} \hspace{0.15cm}\underline {\approx 0.025} \hspace{0.05cm}.$$

6.Bei gleichem $ξ$ kann wieder mit der Bitfehlerwahrscheinlichkeit $p_B = 0.025$ gerechnet werden. Damit erhält man mit $N = 3$ (Bit pro Abtastwert) $$\rho_{\upsilon}= \frac{1}{ 2^{-6 } + 4 \cdot p_{\rm B}} = \frac{1}{ 0.015625 + 0.01} \approx 39 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}10 \cdot {\rm lg} \hspace{0.15cm}\rho_{\upsilon}\hspace{0.15cm}\underline {\approx 15.9\,{\rm dB}} \hspace{0.05cm}.$$ Bei 3 Bit pro Abtastwert ist die Quantisierungsrauschleistung ($P_Q = 0.015625$) schon größer als die Fehlerrauschleistung ($P_F = 0.01$). Durch Erhöhung der Sendeleistung könnte wegen der Quantisierung der Sinkenstörabstand maximal 18 dB betragen, wenn keine Bitfehler vorkommen ($P_F = 0$).