Aufgaben:Aufgabe 4.7: Spektren von ASK und BPSK: Unterschied zwischen den Versionen
Safwen (Diskussion | Beiträge) |
Safwen (Diskussion | Beiträge) |
||
Zeile 49: | Zeile 49: | ||
===Musterlösung=== | ===Musterlösung=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''1.''' Der Gleichanteil des unipolaren redundanzfreien Quellensignals beträgt $m_q = s_0/2$. Das Diracgewicht ist somit $B = m_q^2 = s_0^2/4 = 1 V^2$. Ohne diesen Gleichanteil ergibt sich das stochastische Rechtecksignal $q(t) – m_q$ ∈ {$+s_0/2 | + | '''1.''' Der Gleichanteil des unipolaren redundanzfreien Quellensignals beträgt $m_q = s_0/2$. Das Diracgewicht ist somit $B = m_q^2 = s_0^2/4 = 1 V^2$. Ohne diesen Gleichanteil ergibt sich das stochastische Rechtecksignal $q(t) – m_q$ ∈ {$+s_0/2, –s_0/2$}. Dieses gleichsignalfreie Signal besitzt den kontinuierlichen LDS–Anteil $(s_0/2)^2 · T · si^2(πfT)$, woraus der gesuchte Wert bei der Frequenz f = 0 ermittelt werden kann: |
+ | $$A = \frac{s_0^2 \cdot T}{4} = \frac{(2V)^2 \cdot 10^{-6} s}{4} = 10^{-6} V^2/Hz$$ | ||
+ | '''2.''' Das Spektrum Z(f) eines Cosinussignals z(t) besteht aus zwei Diracfunktionen bei ±fT, jeweils mit dem Gewicht 1/2. Das Leistungsdichtespektrum Φz(f) besteht ebenfalls aus den beiden Diracfunktionen, nun aber mit jeweiligem Gewicht 1/4. Die Faltung Φq(f) ∗ Φz(f) ergibt das Leistungsdichtespektrum $\Phi_s(f)$ des Sendesignals. Daraus folgt: | ||
+ | $$C = \frac{A}{4} = 0.25 \cdot 10^{-6} V^2/Hz, D = \frac{B}{4} = 0.25 V^2$$ | ||
− | |||
+ | '''3.''' | ||
− | + | '''4.''' | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | '''4.''' | ||
− | |||
− | |||
+ | '''5.''' | ||
{{ML-Fuß}} | {{ML-Fuß}} | ||
Version vom 7. Januar 2017, 16:28 Uhr
Die Sendesignale von ASK (Amplitude Shift Keying) und BPSK (Binary Phase Shift Keying) können beide in der Form $s(t) = q(t) · z(t)$ dargestellt werden, wobei z(t) eine harmonische Schwingung mit der Frequenz $f_T$ und der Amplitude 1 darstellt. Die Trägerphase $ϕ_T$ ist für die hier betrachteten Leistungsdichtespektren nicht von Bedeutung.
Bei ASK sind unipolare Amplitudenkoeffizienten – das heißt: $a_ν ∈ {0, 1}$ – des Quellensignals $$ q(t) = \sum_{\nu = - \infty}^{+\infty}a_\nu \cdot g_q (t - \nu \cdot T)$$ anzusetzen, während im Fall der BPSK $a_ν$ ∈ {–1, +1} zu berücksichtigen ist. Die Quelle ist jeweils redundanzfrei, was bedeutet, dass die beiden möglichen Symbole ±1 gleichwahrscheinlich sind und die Symbole statistisch voneinander unabhängig.
In der Grafik sind die Leistungsdichtespektren $Φ_q(f)$ und $Φ_s(f)$ von Quellensignal und Sendesignal angegeben, die sich bei einem NRZ–Rechteckimpuls $g_q(t)$ mit der Amplitude $s_0 = 2 V$ und der Dauer $T = 1 μs$ ergeben. Damit lautet die Spektralfunktion: $$G_q(f) = s_0 \cdot T \cdot {\rm si}(\pi f T)\hspace{0.05cm}.$$ Zu bestimmen sind in dieser Aufgabe die Konstanten A, B, C und D für ASK und BPSK.
Hinweis: Die Aufgabe bezieht sich auf das Kapitel 4.2 dieses Buches sowie auf das Kapitel 2.1 im Buch „Digitalsignalübertragung”.
Fragebogen
Musterlösung
3.
4.
5.