Aufgaben:Aufgabe 3.6: Partitionierungsungleichung: Unterschied zwischen den Versionen
Zeile 8: | Zeile 8: | ||
:$$P_X(X) = P_X ( x_1, \hspace{0.05cm} x_2, \text{...} \hspace{0.05cm}, \hspace{0.05cm} x_M )\hspace{0.05cm},$$ | :$$P_X(X) = P_X ( x_1, \hspace{0.05cm} x_2, \text{...} \hspace{0.05cm}, \hspace{0.05cm} x_M )\hspace{0.05cm},$$ | ||
:$$Q_X(X) =Q_X ( x_1, \hspace{0.05cm} x_2, \text{...} \hspace{0.05cm}, \hspace{0.05cm} x_M ), $$ | :$$Q_X(X) =Q_X ( x_1, \hspace{0.05cm} x_2, \text{...} \hspace{0.05cm}, \hspace{0.05cm} x_M ), $$ | ||
− | aus, die in irgendeiner Form „ähnlich” sein sollen | + | aus, die in irgendeiner Form „ähnlich” sein sollen. |
− | * Die Menge $X$ unterteilen wir in die Partitionen $A_1, \text{...} , A_K$ , die zueinander disjunkt sind und ein | + | |
− | :$X = \big \{ \hspace{0.05cm} x_1, \hspace{0.05cm} x_2, ... \hspace{0.05cm}, \hspace{0.05cm} x_M \hspace{0.05cm} \big \}$ | + | * Die Menge $X$ unterteilen wir in die Partitionen $A_1, \text{...} , A_K$ , die zueinander [[Stochastische_Signaltheorie/Mengentheoretische_Grundlagen#Disjunkte_Mengen|disjunkt]] sind und ein [[Stochastische_Signaltheorie/Mengentheoretische_Grundlagen#Vollst.C3.A4ndiges_System|vollständiges System]] ergeben: |
+ | :$X$$ = \big \{ \hspace{0.05cm} x_1, \hspace{0.05cm} x_2, ... \hspace{0.05cm}, \hspace{0.05cm} x_M \hspace{0.05cm} \big \}$$ | ||
+ | |||
* Die Wahrscheinlichkeitsfunktionen bezüglich der Partitionierungen $A_1, A_2, \text{...} , A_K$ bezeichnen wir im Folgenden mit | * Die Wahrscheinlichkeitsfunktionen bezüglich der Partitionierungen $A_1, A_2, \text{...} , A_K$ bezeichnen wir im Folgenden mit | ||
− | |||
:$$P_X^{\hspace{0.15cm}(A)} = \left [ P_X ( A_1 )\hspace{0.05cm}, \hspace{0.05cm}...\hspace{0.1cm},P_X ( A_K ) \right ],\hspace{0.05cm}\hspace{0.5cm}{\rm wobei}\hspace{0.15cm} P_X ( A_i ) = \sum_{ x \in A_i} P_X ( x )\hspace{0.05cm},$$ | :$$P_X^{\hspace{0.15cm}(A)} = \left [ P_X ( A_1 )\hspace{0.05cm}, \hspace{0.05cm}...\hspace{0.1cm},P_X ( A_K ) \right ],\hspace{0.05cm}\hspace{0.5cm}{\rm wobei}\hspace{0.15cm} P_X ( A_i ) = \sum_{ x \in A_i} P_X ( x )\hspace{0.05cm},$$ | ||
:$$Q_X^{\hspace{0.15cm}(A)}= \left [ Q_X ( A_1 )\hspace{0.05cm}, \hspace{0.05cm}...\hspace{0.1cm},Q_X ( A_K ) \right ],\hspace{0.05cm}\hspace{0.40cm}{\rm wobei}\hspace{0.15cm} Q_X ( A_i ) = \sum_{ x \in A_i} Q_X ( x )\hspace{0.05cm}. $$ | :$$Q_X^{\hspace{0.15cm}(A)}= \left [ Q_X ( A_1 )\hspace{0.05cm}, \hspace{0.05cm}...\hspace{0.1cm},Q_X ( A_K ) \right ],\hspace{0.05cm}\hspace{0.40cm}{\rm wobei}\hspace{0.15cm} Q_X ( A_i ) = \sum_{ x \in A_i} Q_X ( x )\hspace{0.05cm}. $$ | ||
− | + | {{BlaueBox|TEXT= | |
− | + | Die '''Partitionierungsungleichung''' liefert folgende Größenrelation hinsichtlich der Kullback–Leibler–Distanzen: | |
− | Die | + | :$$D(P_X^{\hspace{0.15cm}(A)} \hspace{0.05cm} \vert \vert \hspace{0.05cm} Q_X^{\hspace{0.15cm}(A)}) |
− | + | \hspace{0.25cm}\le \hspace{0.25cm}D(P_X \hspace{0.05cm}\vert \vert \hspace{0.05cm} Q_X) \hspace{0.05cm}.$$}} | |
− | $D(P_X^{ (A) } \ | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | mit $K = 2$ partitioniert werden und | + | In Teilaufgabe (1) soll die Kullback–Leibler–Distanz der beiden Wahrscheinlichkeitsfunktionen $P_X(X)$ und $Q_X(X)$ für $X = \{0, 1, 2\}$ ⇒ $|X| = 3$ ermittelt werden. Anschließend soll die Menge $X$ mit $K = 2$ partitioniert werden entsprechend |
− | + | * $A = \{A_1 , A_2\}$ mit $A_1 =\{0\}$ und $A_2 = \{ 1,2 \}$ , | |
+ | * $B = \{B_1 , B_2\}$ mit $B_1 =\{1\}$ und $B_2 = \{ 0,2 \}$, | ||
+ | * $C = \{C_1 , C_2\}$ mit $C_1 =\{2\}$ und $C_2 = \{ 0,1\}$, | ||
− | :* $D(P_X^{ (B) } \ | + | Anschließend sollen die jeweiligen Kullback–Leibler–Distanzen angegeben werden: |
+ | * $D(P_X^{ (A) } \hspace{0.05cm} \vert \vert \hspace{0.05cm} Q_X^{ (A) } )$, | ||
+ | * $D(P_X^{ (B) } \hspace{0.05cm} \vert \vert \hspace{0.05cm} Q_X^{ (B) } )$, | ||
+ | * $D(P_X^{ (C) } \hspace{0.05cm} \vert \vert \hspace{0.05cm} Q_X^{ (C) } )$. | ||
− | + | In der Teilaufgabe (5) wird schließlich nach den Bedingungen gefragt, damit in der obigen Ungleichung das Gleichheitszeichen zutrifft. | |
− | |||
Zeile 40: | Zeile 39: | ||
*Die Aufgabe gehört zum Kapitel [[Informationstheorie/Einige_Vorbemerkungen_zu_zweidimensionalen_Zufallsgrößen|Einige Vorbemerkungen zu den 2D-Zufallsgrößen]]. | *Die Aufgabe gehört zum Kapitel [[Informationstheorie/Einige_Vorbemerkungen_zu_zweidimensionalen_Zufallsgrößen|Einige Vorbemerkungen zu den 2D-Zufallsgrößen]]. | ||
*Insbesondere wird Bezug genommen auf die Seite [[Informationstheorie/Einige_Vorbemerkungen_zu_zweidimensionalen_Zufallsgrößen#Relative_Entropie_.E2.80.93_Kullback.E2.80.93Leibler.E2.80.93Distanz|Relative Entropie – Kullback-Leibler-Distanz]]. | *Insbesondere wird Bezug genommen auf die Seite [[Informationstheorie/Einige_Vorbemerkungen_zu_zweidimensionalen_Zufallsgrößen#Relative_Entropie_.E2.80.93_Kullback.E2.80.93Leibler.E2.80.93Distanz|Relative Entropie – Kullback-Leibler-Distanz]]. | ||
− | |||
− | |||
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein. | *Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein. | ||
− | + | *Die beiden Wahrscheinlichkeitsfunktionen können aus obiger Grafik wie folgt abgelesen werden: | |
− | + | :$$P_X(X) = [1/4 , 1/2 , 1/4],$$ | |
− | + | :$$Q_X(X) = [1/8 , 3/4, 1/8].$$ | |
− | |||
− | $P_X(X) = [1/4 , 1/2 , 1/4]$ | ||
− | |||
− | $Q_X(X) = [1/8 , 3/4, 1/8]$ | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
Version vom 31. Mai 2017, 14:40 Uhr
Die Kullback–Leibler–Distanz (kurz KLD) wird auch in der „Partitionierungsungleichung” (englisch: Partition Unequality) verwendet:
- Wir gehen von der Menge $X = \{ x_1, \hspace{0.05cm} x_2, \text{...} \hspace{0.05cm}, \hspace{0.05cm} x_M \}$ und den Wahrscheinlichkeitsfunktionen
- $$P_X(X) = P_X ( x_1, \hspace{0.05cm} x_2, \text{...} \hspace{0.05cm}, \hspace{0.05cm} x_M )\hspace{0.05cm},$$
- $$Q_X(X) =Q_X ( x_1, \hspace{0.05cm} x_2, \text{...} \hspace{0.05cm}, \hspace{0.05cm} x_M ), $$
aus, die in irgendeiner Form „ähnlich” sein sollen.
- Die Menge $X$ unterteilen wir in die Partitionen $A_1, \text{...} , A_K$ , die zueinander disjunkt sind und ein vollständiges System ergeben:
- $X$$ = \big \{ \hspace{0.05cm} x_1, \hspace{0.05cm} x_2, ... \hspace{0.05cm}, \hspace{0.05cm} x_M \hspace{0.05cm} \big \}$$
- Die Wahrscheinlichkeitsfunktionen bezüglich der Partitionierungen $A_1, A_2, \text{...} , A_K$ bezeichnen wir im Folgenden mit
- $$P_X^{\hspace{0.15cm}(A)} = \left [ P_X ( A_1 )\hspace{0.05cm}, \hspace{0.05cm}...\hspace{0.1cm},P_X ( A_K ) \right ],\hspace{0.05cm}\hspace{0.5cm}{\rm wobei}\hspace{0.15cm} P_X ( A_i ) = \sum_{ x \in A_i} P_X ( x )\hspace{0.05cm},$$
- $$Q_X^{\hspace{0.15cm}(A)}= \left [ Q_X ( A_1 )\hspace{0.05cm}, \hspace{0.05cm}...\hspace{0.1cm},Q_X ( A_K ) \right ],\hspace{0.05cm}\hspace{0.40cm}{\rm wobei}\hspace{0.15cm} Q_X ( A_i ) = \sum_{ x \in A_i} Q_X ( x )\hspace{0.05cm}. $$
Die Partitionierungsungleichung liefert folgende Größenrelation hinsichtlich der Kullback–Leibler–Distanzen:
- $$D(P_X^{\hspace{0.15cm}(A)} \hspace{0.05cm} \vert \vert \hspace{0.05cm} Q_X^{\hspace{0.15cm}(A)}) \hspace{0.25cm}\le \hspace{0.25cm}D(P_X \hspace{0.05cm}\vert \vert \hspace{0.05cm} Q_X) \hspace{0.05cm}.$$
In Teilaufgabe (1) soll die Kullback–Leibler–Distanz der beiden Wahrscheinlichkeitsfunktionen $P_X(X)$ und $Q_X(X)$ für $X = \{0, 1, 2\}$ ⇒ $|X| = 3$ ermittelt werden. Anschließend soll die Menge $X$ mit $K = 2$ partitioniert werden entsprechend
- $A = \{A_1 , A_2\}$ mit $A_1 =\{0\}$ und $A_2 = \{ 1,2 \}$ ,
- $B = \{B_1 , B_2\}$ mit $B_1 =\{1\}$ und $B_2 = \{ 0,2 \}$,
- $C = \{C_1 , C_2\}$ mit $C_1 =\{2\}$ und $C_2 = \{ 0,1\}$,
Anschließend sollen die jeweiligen Kullback–Leibler–Distanzen angegeben werden:
- $D(P_X^{ (A) } \hspace{0.05cm} \vert \vert \hspace{0.05cm} Q_X^{ (A) } )$,
- $D(P_X^{ (B) } \hspace{0.05cm} \vert \vert \hspace{0.05cm} Q_X^{ (B) } )$,
- $D(P_X^{ (C) } \hspace{0.05cm} \vert \vert \hspace{0.05cm} Q_X^{ (C) } )$.
In der Teilaufgabe (5) wird schließlich nach den Bedingungen gefragt, damit in der obigen Ungleichung das Gleichheitszeichen zutrifft.
Hinweise:
- Die Aufgabe gehört zum Kapitel Einige Vorbemerkungen zu den 2D-Zufallsgrößen.
- Insbesondere wird Bezug genommen auf die Seite Relative Entropie – Kullback-Leibler-Distanz.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
- Die beiden Wahrscheinlichkeitsfunktionen können aus obiger Grafik wie folgt abgelesen werden:
- $$P_X(X) = [1/4 , 1/2 , 1/4],$$
- $$Q_X(X) = [1/8 , 3/4, 1/8].$$
Fragebogen
Musterlösung
1. Für die Kullback–Leibler–Distanz (KLD) gilt:
$$D(P_X \parallel P_Y) = E [ log_2 \frac{P_X(X)}{P_Y(X)}] = \sum\limits_{ x \epsilon X} P_X(x) . log_2 \frac{P_X(x)}{P_Y(x)} =$$
$$\frac{1}{2} . log_2 \frac{1/2}{3/4} + 2 . \frac{1}{4} . log_2 \frac{1/4}{1/8} +log_2 \frac{2}{3} + \frac{1}{2} . log_2(2) =$$
$$1 - \frac{1}{2} . log_2(3) = 0.2075 (bit)$$
2. $Partitionierung A \Rightarrow A_1 = \{0\}$ , $A_2 = \{ 1 , 2 \}$ : Man erhält die Wahrscheinlichkeitsfunktionen $P_X^{ (A) } (X) = \{1/4 , 3/4\}$ und $Q_X^{ (A) } (X) = \{1/8 , 7/8\}$. Daraus folgt:
$$D(P_X^{ (A) } \parallel Q_X^{ (A) } )$ = \frac{1}{4} . log_2 \frac{1/4}{1/8} + \frac{3}{4} . log_2 \frac{3/4}{7/8} =$$
$$ = \frac{1}{4} . log_2 (2) + \frac{3}{4} . log_2 \frac{6}{7} = 0.0832 (bit)$$ Es ergibt sich also eine kleinere KLD als in Teilaufgabe (a).
3. $Partitionierung B \Rightarrow B_1 = \{1\}$ , $B_2 = \{ 0 , 2 \}$ : Man erhält die Wahrscheinlichkeitsfunktionen $P_X^{ (B) } (X) = \{1/2 , 1/2\}$ und $Q_X^{ (B) } (X) = \{3/4 , 1/4\}$.
Analog zur Teilaufgabe (b) erhält man nun:
$$D(P_X^{ (B) } \parallel Q_X^{ (B) } ) = \frac{1}{2} . log_2 \frac{1/2}{3/4} + \frac{1}{2} . log_2 \frac{1/2}{1/4} = 0.2075$$ $\Rightarrow$ gleiches Ergebnis wie in Aufgabe (a) $\Rightarrow$ Bei Partitionierung (B) gilt das Gleichheitszeichen.
4.$Partitionierung C \Rightarrow C_1 = \{2\}$ , $C_2 = \{ 0 , 1\}$ : Man erhält $P_X^{ (C) } (X) = \{1/4, 3/4\}$ , $Q_X^{ (C) } (X) = \{1/8, 7/8\}$ . also die gleichen Funktionen wie bei der Partitionierung
$A \Rightarrow Lösungsvorschlag 1$.
5. Partitionierung $B$ hat zum Ergebnis $D(P_X^{ (B) } \parallel Q_X^{ (B) } ) = D(P_X \parallel Q_X)$ geführt. Für diesen Fall ist
$\frac{P_X(1)}{Q_X(1)} = \frac{1/2}{3/4} = \frac{2}{3}$ , $\frac{P_X(B_1)}{Q_X(B_1)} = \frac{1/2}{3/4} = \frac{2}{3}$,
$\frac{P_X(0)}{Q_X(0)} = \frac{1/4}{1/8} = 2$ , $\frac{P_X(B_2)}{Q_X(B_2)} = \frac{1/2}{1/4} = 2$,
$\frac{P_X(2)}{Q_X(2)} = \frac{1/4}{1/8} = 2$ , $\frac{P_X(B_2)}{Q_X(B_2)} = \frac{1/2}{1/4} = 2$
Es muss also für alle $x \epsilon X$ gelten :
$\frac{P_X(x)}{Q_X(x)} = \frac{P_X(B_1)}{Q_X(B_1)} $ , falls $ x \epsilon B_1$
$\frac{P_X(x)}{Q_X(x)} = \frac{P_X(B_2)}{Q_X(B_2)} $ , falls $ x \epsilon B_2$
Durch Verallgemeinerung erhält man, dass $beide Lösungsvorschläge$ richtig sind.