Aufgaben:Aufgabe 5.1: Fehlerabstandsverteilung: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 47: Zeile 47:
 
$V_a(k = 1) \ = \ $ { 1 }  
 
$V_a(k = 1) \ = \ $ { 1 }  
  
{Bestimmen Sie für das '''Modell $M_1$''' die Wahrscheinlichkeiten der Fehlerabstände.
+
{Bestimmen Sie für das Modell $M_1$ die Wahrscheinlichkeiten der Fehlerabstände.
 
|type="{}"}
 
|type="{}"}
 
${\rm Pr}(a = 1) \ = \ $ { 0.3 3% }  
 
${\rm Pr}(a = 1) \ = \ $ { 0.3 3% }  
Zeile 55: Zeile 55:
 
${\rm Pr}(a = 5) \ = \ $ { 0.1 3% }
 
${\rm Pr}(a = 5) \ = \ $ { 0.1 3% }
  
{Wie groß ist der maximal mögliche Fehlerabstand beim '''Modell $M_1$'''?
+
{Wie groß ist der maximal mögliche Fehlerabstand beim Modell $M_1$?
 
|type="{}"}
 
|type="{}"}
 
$k_{\rm max} \ = \ ${ 5 }  
 
$k_{\rm max} \ = \ ${ 5 }  
  
{Berechnen Sie für das '''Modell $M_1$''' den mittleren Fehlerabstand.
+
{Berechnen Sie für das Modell $M_1$ den mittleren Fehlerabstand.
 
|type="{}"}
 
|type="{}"}
 
${\rm E}[a] \ = \ ${ 2.5 3% }
 
${\rm E}[a] \ = \ ${ 2.5 3% }
  
{Wie groß ist  beim '''Modell $M_1$''' die mittlere Fehlerwahrscheinlichkeit $p_{\rm M} = {\rm E}[e]$?
+
{Wie groß ist  beim Modell $M_1$ die mittlere Fehlerwahrscheinlichkeit $p_{\rm M} = {\rm E}[e]$?
 
|type="{}"}
 
|type="{}"}
 
$p_{\rm M} \ = \ ${ 0.4 3% }
 
$p_{\rm M} \ = \ ${ 0.4 3% }
  
{Welche Aussagen stimmen für das '''Modell $M_2$''' mit Sicherheit?
+
{Welche Aussagen stimmen für das Modell $M_2$ mit Sicherheit?
 
|type="[]"}
 
|type="[]"}
 
+ Zwei Fehler können nicht direkt aufeinander folgen.
 
+ Zwei Fehler können nicht direkt aufeinander folgen.
Zeile 84: Zeile 84:
 
'''(2)'''  Aus der Definitionsgleichung folgt bereits
 
'''(2)'''  Aus der Definitionsgleichung folgt bereits
 
:$$V_a(k = 1) =  {\rm Pr}(a \ge 1)\hspace{0.15cm}\underline {= 1} \hspace{0.05cm}.$$
 
:$$V_a(k = 1) =  {\rm Pr}(a \ge 1)\hspace{0.15cm}\underline {= 1} \hspace{0.05cm}.$$
 
  
 
'''(3)'''  Es gilt ${\rm Pr}(a = k) = V_a(k) \, –V_a(k+1)$. Daraus erhält man für die einzelnen Wahrscheinlichkeiten:
 
'''(3)'''  Es gilt ${\rm Pr}(a = k) = V_a(k) \, –V_a(k+1)$. Daraus erhält man für die einzelnen Wahrscheinlichkeiten:
Zeile 93: Zeile 92:
 
:$${\rm Pr}(a = 5)\hspace{-0.1cm} \ = \ \hspace{-0.1cm}V_a(5) -
 
:$${\rm Pr}(a = 5)\hspace{-0.1cm} \ = \ \hspace{-0.1cm}V_a(5) -
 
V_a(6) = 0.10 - 0 \hspace{0.15cm}\underline {= 0.10}\hspace{0.05cm}.$$
 
V_a(6) = 0.10 - 0 \hspace{0.15cm}\underline {= 0.10}\hspace{0.05cm}.$$
 
  
 
'''(4)'''  Aus $V_a(k=6) = {\rm Pr}(a ≥ 6) = 0$ folgt für den maximalen Fehlerabstand direkt $k_{\rm max} \ \underline {= 5}$.
 
'''(4)'''  Aus $V_a(k=6) = {\rm Pr}(a ≥ 6) = 0$ folgt für den maximalen Fehlerabstand direkt $k_{\rm max} \ \underline {= 5}$.
Zeile 101: Zeile 99:
 
:$${\rm E}[a] = \sum_{k = 1}^{5} k \cdot {\rm Pr}(a = k) =  1 \cdot 0.3 +2 \cdot 0.25 +3 \cdot 0.2 +4 \cdot 0.15 +5 \cdot 0.1\hspace{0.15cm}\underline { = 2.5}
 
:$${\rm E}[a] = \sum_{k = 1}^{5} k \cdot {\rm Pr}(a = k) =  1 \cdot 0.3 +2 \cdot 0.25 +3 \cdot 0.2 +4 \cdot 0.15 +5 \cdot 0.1\hspace{0.15cm}\underline { = 2.5}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
 
  
 
'''(6)'''  Die mittlere Fehlerwahrscheinlichkeit ist der Kehrwert des mittleren Fehlerabstands: $p_{\rm M} \ \underline {= 0.4}$.
 
'''(6)'''  Die mittlere Fehlerwahrscheinlichkeit ist der Kehrwert des mittleren Fehlerabstands: $p_{\rm M} \ \underline {= 0.4}$.
  
  
'''(7)'''  Die Aussage 1 stimmt, da ${\rm Pr}(a = 1) = V_a(1) \, – V_a(2) = 0$ ist.
+
'''(7)'''&nbsp; Mit Sicherheit stimmt nur die <u>Aussage 1</u>:
 +
*Die Aussage 1 stimmt, da ${\rm Pr}(a = 1) = V_a(1) \, &ndash; V_a(2) = 0$ ist.
 
* Die zweite Aussage ist nicht sicher, da $V_a(6)$ nur die Summe der Wahrscheinlichkeiten ${\rm Pr}(a &#8805; 6)$ angibt, aber nicht ${\rm Pr}(a = 6)$ allein. Nur mit der zusätzlichen Angabe $V_a(7) = 0$ würde die Aussage 2 zutreffen.
 
* Die zweite Aussage ist nicht sicher, da $V_a(6)$ nur die Summe der Wahrscheinlichkeiten ${\rm Pr}(a &#8805; 6)$ angibt, aber nicht ${\rm Pr}(a = 6)$ allein. Nur mit der zusätzlichen Angabe $V_a(7) = 0$ würde die Aussage 2 zutreffen.
* Ebenso ist für den Erwartungswert ${\rm E}[a]$ augrund fehlender Angaben keine endgültige Aussage möglich. Mit $V_a(7 = 0)$ würde sich
+
* Ebenso ist für den Erwartungswert ${\rm E}[a]$ augrund fehlender Angaben keine endgültige Aussage möglich. Mit $V_a(7 = 0)$ würde sich ergeben.:
 
:$${\rm E}[a] =  2 \cdot 0.1 +3 \cdot 0.2 +4 \cdot 0.2 +5 \cdot 0.2 +6 \cdot 0.3=
 
:$${\rm E}[a] =  2 \cdot 0.1 +3 \cdot 0.2 +4 \cdot 0.2 +5 \cdot 0.2 +6 \cdot 0.3=
 
  4.4$$
 
  4.4$$
 
+
*Ohne diese Angabe ist nur die Aussage ${\rm E}[a] &#8805; 4.4$ möglich. Damit gilt aber für die mittlere Fehlerwahrscheinlichkeit die Bedingung $p_{\rm M} < 1/4.4 < 0.227$ &nbsp; &#8658; &nbsp; Die Aussage 3 trifft also mit Sicherheit nicht zu. .
ergeben. Ohne diese Angabe ist nur die Aussage ${\rm E}[a] &#8805; 4.4$ möglich. Damit gilt aber für die mittlere Fehlerwahrscheinlichkeit die Bedingung $p_{\rm M} < 1/4.4 < 0.227$ &#8658; Die Aussage 3 trifft also mit Sicherheit nicht zu. Mit Sicherheit stimmt nur die <u>Aussage 1</u>.
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
 
[[Category:Aufgaben zu Digitalsignalübertragung|^5.1 Zu den Digitalen Kanalmodellen^]]
 
[[Category:Aufgaben zu Digitalsignalübertragung|^5.1 Zu den Digitalen Kanalmodellen^]]

Version vom 29. November 2017, 16:20 Uhr

Gegebene Verteilung der Fehlerabstände

Ein jedes digitales Kanalmodell kann in gleicher Weise beschrieben werden durch

  • die Fehlerfolge $〈e_{\rm \nu}〉$,
  • durch die Fehlerabstandsfolge $〈a_{\rm \nu '}〉$.


Beispielhaft betrachten wir die Folgen:

$$<\hspace{-0.1cm}e_{\nu} \hspace{-0.1cm}> \ = \ < \hspace{-0.1cm}0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, \text{...} \hspace{-0.1cm}> \hspace{0.05cm},$$
$$< \hspace{-0.1cm}a_{\nu\hspace{0.05cm} '} \hspace{-0.15cm}> \ = \ <\hspace{-0.1cm}2, 3, 1, 4, 2, 5, 1, 1, 3, 4, 1, 2, \text{...} \hspace{-0.1cm}> \hspace{0.05cm}.$$

Man erkennt daraus beispielsweise:

  • Der Fehlerabstand $a_2 = 3$ bedeutet, dass zwischen dem ersten und dem zweiten Fehler zwei fehlerfreie Symbole liegen.
  • Dagegen deutet $a_3 = 1$ darauf hin, dass nach dem zweiten Fehler direkt ein dritter folgt.


Die unterschiedlichen Laufindizes ($\nu$ und $\nu\hspace{0.05cm} '$, jeweils beginnend mit $1$) sind erforderlich, da keine Synchronität zwischen der Fehlerabstandsfolge und der Fehlerfolge besteht.

In der Grafik ist für zwei verschiedene Modelle $M_1$ und $M_2$ die Fehlerabstandsverteilung (FAV)

$$V_a(k) = {\rm Pr}(a \ge k) = 1 - \sum_{\kappa = 1}^{k} {\rm Pr}(a = \kappa)\hspace{0.05cm}$$

angegeben. Diese Tabelle soll in dieser Aufgabe ausgewertet werden.


Hinweise:


Fragebogen

1

Wie lauten die folgenden Fehlerwerte ($0$ oder $1$)?

$e_{\rm 16} \ = \ $

$e_{\rm 17} \ = \ $

$e_{\rm 18} \ = \ $

2

Wie groß ist bei beiden Modellen der Wert $V_a(k = 1)$?

$V_a(k = 1) \ = \ $

3

Bestimmen Sie für das Modell $M_1$ die Wahrscheinlichkeiten der Fehlerabstände.

${\rm Pr}(a = 1) \ = \ $

${\rm Pr}(a = 2) \ = \ $

${\rm Pr}(a = 3) \ = \ $

${\rm Pr}(a = 4) \ = \ $

${\rm Pr}(a = 5) \ = \ $

4

Wie groß ist der maximal mögliche Fehlerabstand beim Modell $M_1$?

$k_{\rm max} \ = \ $

5

Berechnen Sie für das Modell $M_1$ den mittleren Fehlerabstand.

${\rm E}[a] \ = \ $

6

Wie groß ist beim Modell $M_1$ die mittlere Fehlerwahrscheinlichkeit $p_{\rm M} = {\rm E}[e]$?

$p_{\rm M} \ = \ $

7

Welche Aussagen stimmen für das Modell $M_2$ mit Sicherheit?

Zwei Fehler können nicht direkt aufeinander folgen.
Der häufigste Fehlerabstand ist $a = 6$.
Die mittlere Fehlerwahrscheinlichkeit beträgt $p_{\rm M} = 0.25$.


Musterlösung

(1)  Die Auswertung der Fehlerabstandsfolge weist auf Fehler bei $\nu = 2, 5, 6, 10, 12, 17, 18, 19, 22, 26, 27$ und $29$ hin. Daraus folgt:

  • $e_{\rm 16} \ \underline {= 0}$,
  • $e_{\rm 17} \ \underline {= 1}$,
  • $e_{\rm 18} \ \underline {= 1}$.


(2)  Aus der Definitionsgleichung folgt bereits

$$V_a(k = 1) = {\rm Pr}(a \ge 1)\hspace{0.15cm}\underline {= 1} \hspace{0.05cm}.$$

(3)  Es gilt ${\rm Pr}(a = k) = V_a(k) \, –V_a(k+1)$. Daraus erhält man für die einzelnen Wahrscheinlichkeiten:

$${\rm Pr}(a = 1)\hspace{-0.1cm} \ = \ \hspace{-0.1cm}V_a(1) - V_a(2) = 1 - 0.7\hspace{0.15cm}\underline {= 0.3}\hspace{0.05cm},$$
$${\rm Pr}(a = 2)\hspace{-0.1cm} \ = \ \hspace{-0.1cm}V_a(2) - V_a(3) = 0.7 - 0.45 \hspace{0.15cm}\underline {= 0.25}\hspace{0.05cm},$$
$${\rm Pr}(a = 3)\hspace{-0.1cm} \ = \ \hspace{-0.1cm}V_a(3) - V_a(4) = 0.45 - 0.25 \hspace{0.15cm}\underline {= 0.2}\hspace{0.05cm},$$
$${\rm Pr}(a = 4)\hspace{-0.1cm} \ = \ \hspace{-0.1cm}V_a(4) - V_a(5) = 0.25 - 0.10 \hspace{0.15cm}\underline {= 0.15}\hspace{0.05cm},$$
$${\rm Pr}(a = 5)\hspace{-0.1cm} \ = \ \hspace{-0.1cm}V_a(5) - V_a(6) = 0.10 - 0 \hspace{0.15cm}\underline {= 0.10}\hspace{0.05cm}.$$

(4)  Aus $V_a(k=6) = {\rm Pr}(a ≥ 6) = 0$ folgt für den maximalen Fehlerabstand direkt $k_{\rm max} \ \underline {= 5}$.


(5)  Mit den unter (3) berechneten Wahrscheinlichkeiten ergibt sich für den gesuchten Erwartungswert:

$${\rm E}[a] = \sum_{k = 1}^{5} k \cdot {\rm Pr}(a = k) = 1 \cdot 0.3 +2 \cdot 0.25 +3 \cdot 0.2 +4 \cdot 0.15 +5 \cdot 0.1\hspace{0.15cm}\underline { = 2.5} \hspace{0.05cm}.$$

(6)  Die mittlere Fehlerwahrscheinlichkeit ist der Kehrwert des mittleren Fehlerabstands: $p_{\rm M} \ \underline {= 0.4}$.


(7)  Mit Sicherheit stimmt nur die Aussage 1:

  • Die Aussage 1 stimmt, da ${\rm Pr}(a = 1) = V_a(1) \, – V_a(2) = 0$ ist.
  • Die zweite Aussage ist nicht sicher, da $V_a(6)$ nur die Summe der Wahrscheinlichkeiten ${\rm Pr}(a ≥ 6)$ angibt, aber nicht ${\rm Pr}(a = 6)$ allein. Nur mit der zusätzlichen Angabe $V_a(7) = 0$ würde die Aussage 2 zutreffen.
  • Ebenso ist für den Erwartungswert ${\rm E}[a]$ augrund fehlender Angaben keine endgültige Aussage möglich. Mit $V_a(7 = 0)$ würde sich ergeben.:
$${\rm E}[a] = 2 \cdot 0.1 +3 \cdot 0.2 +4 \cdot 0.2 +5 \cdot 0.2 +6 \cdot 0.3= 4.4$$
  • Ohne diese Angabe ist nur die Aussage ${\rm E}[a] ≥ 4.4$ möglich. Damit gilt aber für die mittlere Fehlerwahrscheinlichkeit die Bedingung $p_{\rm M} < 1/4.4 < 0.227$   ⇒   Die Aussage 3 trifft also mit Sicherheit nicht zu. .