Aufgaben:Aufgabe 2.6: Zweiwegekanal: Unterschied zwischen den Versionen
K (Guenter verschob die Seite 2.6 Zweiwegekanal nach Aufgabe 2.6: Zweiwegekanal) |
|||
Zeile 3: | Zeile 3: | ||
}} | }} | ||
− | [[Datei:P_ID912__LZI_A_2_6.png|right| | + | [[Datei:P_ID912__LZI_A_2_6.png|right|frame|Impulsantwort des Zweiwegekanals]] |
Der so genannte Zweiwegekanal wird durch folgende Impulsantwort charakterisiert (mit $T_1 < T_2$): | Der so genannte Zweiwegekanal wird durch folgende Impulsantwort charakterisiert (mit $T_1 < T_2$): | ||
− | $$h(t) = z_1 \cdot \delta ( t - T_1) + z_2 \cdot \delta ( | + | :$$h(t) = z_1 \cdot \delta ( t - T_1) + z_2 \cdot \delta ( |
t - T_2).$$ | t - T_2).$$ | ||
*Bis auf wenige Kombinationen der Systemparameter $z_1$, $T_1$, $z_2$ und $T_2$ wird dieser Kanal zu linearen Verzerrungen führen. | *Bis auf wenige Kombinationen der Systemparameter $z_1$, $T_1$, $z_2$ und $T_2$ wird dieser Kanal zu linearen Verzerrungen führen. | ||
− | * Man spricht nur dann von einem verzerrungsfreien Kanal, wenn durch ihn kein einziges Eingangssignal verzerrt wird. | + | * Man spricht nur dann von einem verzerrungsfreien Kanal, wenn durch ihn kein einziges Eingangssignal verzerrt wird. Das bedeutet: |
− | + | *Auch bei verzerrendem Kanal kann es Sonderfälle geben, bei denen tatsächlich $y(t) = \alpha \cdot x(t - \tau)$ gilt. | |
Zeile 24: | Zeile 24: | ||
* die Summe zweier Cosinussignale mit den Frequenzen $f_2 = 250 \ \rm Hz$ und $f_3 = 1250 \ \rm Hz$: | * die Summe zweier Cosinussignale mit den Frequenzen $f_2 = 250 \ \rm Hz$ und $f_3 = 1250 \ \rm Hz$: | ||
:$$x_3(t) = \cos(2 \pi \cdot f_2 \cdot t) + \cos(2 \pi \cdot f_3 \cdot t) .$$ | :$$x_3(t) = \cos(2 \pi \cdot f_2 \cdot t) + \cos(2 \pi \cdot f_3 \cdot t) .$$ | ||
+ | |||
+ | |||
+ | |||
+ | |||
Zeile 29: | Zeile 33: | ||
*Die Aufgabe gehört zum Kapitel [[Lineare_zeitinvariante_Systeme/Lineare_Verzerrungen|Lineare Verzerrungen]]. | *Die Aufgabe gehört zum Kapitel [[Lineare_zeitinvariante_Systeme/Lineare_Verzerrungen|Lineare Verzerrungen]]. | ||
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein. | *Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein. | ||
− | *Um Ihnen einige Rechnungen zu ersparen, wird | + | *Um Ihnen einige Rechnungen zu ersparen, wird das Ergebnis für den Parametersatz $z_1 = 1$, $T_1 = 0$, $z_2 =0.5$, $T_2 = 1 \ \rm ms$ angegeben: |
− | $$|H(f = f_2)| = |H(f = f_3)| = \sqrt{1.25} \approx 1.118, \; \; \; \; b(f = f_2) = b(f = f_3) = \arctan (0.5) \approx 0.464.$$ | + | :$$|H(f = f_2)| = |H(f = f_3)| = \sqrt{1.25} \approx 1.118, \; \; \; \; b(f = f_2) = b(f = f_3) = \arctan (0.5) \approx 0.464.$$ |
Zeile 36: | Zeile 40: | ||
<quiz display=simple> | <quiz display=simple> | ||
− | {Welche der | + | {Welche der folgenden Aussagen sind zutreffend? |
|type="[]"} | |type="[]"} | ||
− | + Der Parametersatz | + | + Der Parametersatz $[z_1 = 1$, $T_1 = 0$, $z_2 =0]$ ist der einzig mögliche zur Beschreibung des idealen Kanals. |
− | + Jeder verzerrungsfreie Kanal wird durch die beiden Kombinationen | + | + Jeder verzerrungsfreie Kanal wird durch die beiden Kombinationen $[z_1 \ne 0, \; z_2 = 0 ]$ bzw. $[z_1 = 0, \; z_2 \ne 0 ]$ erfasst. |
− | - Die Werte | + | - Die Werte $[z_1 \ne 0]$ und $[z_2 \ne 0]$ führen zu einem verzerrungsfreien Kanal, wenn $T_1$ und $T_2$ bestmöglich angepasst sind. |
− | {Es gelte $z_1 = 1$, $T_1 = 0$, $z_2 =0.5$ und $T_2 = 1 \ \rm ms$. Berechnen Sie den Frequenzgang $H(f)$ dieses Kanals. Welche Werte gibt es bei Vielfachen von $1 \ \rm kHz$? | + | {Es gelte $z_1 = 1$, $T_1 = 0$, $z_2 =0.5$ und $T_2 = 1 \ \rm ms$. Berechnen Sie den Frequenzgang $H(f)$ dieses Kanals. <br>Welche Werte gibt es bei Vielfachen von $1 \ \rm kHz$? |
|type="{}"} | |type="{}"} | ||
− | ${\rm Re}[H(f = n \cdot 1 \ {\rm kHz})] \ =$ { 1.5 3% } | + | ${\rm Re}[H(f = n \cdot 1 \ {\rm kHz})] \ = \ $ { 1.5 3% } |
− | ${\rm Im}[H(f = n \cdot 1 \ {\rm kHz})] \ =$ { 0. } | + | ${\rm Im}[H(f = n \cdot 1 \ {\rm kHz})] \ = \ $ { 0. } |
− | {Am Eingang des Systems mit gleichen Parametern wie in der Teilaufgabe (2) liegt nun der Diracpuls $x_1(t)$ an. Welche Aussagen treffen für das Ausgangssignal $y_1(t)$ zu? | + | {Am Eingang des Systems mit gleichen Parametern wie in der Teilaufgabe (2) liegt nun der Diracpuls $x_1(t)$ an. <br>Welche Aussagen treffen für das Ausgangssignal $y_1(t)$ zu? |
|type="[]"} | |type="[]"} | ||
+ $y_1(t)$ ist gegenüber $x_1(t)$ um eine Konstante gedämpft/verstärkt. | + $y_1(t)$ ist gegenüber $x_1(t)$ um eine Konstante gedämpft/verstärkt. | ||
Zeile 58: | Zeile 62: | ||
{Berechnen Sie das Signal $y_2(t)$ als Systemantwort auf das Cosinussignal $x_2(t)$. Welcher Signalwert tritt zum Zeitpunkt $t = 0$ auf? | {Berechnen Sie das Signal $y_2(t)$ als Systemantwort auf das Cosinussignal $x_2(t)$. Welcher Signalwert tritt zum Zeitpunkt $t = 0$ auf? | ||
|type="{}"} | |type="{}"} | ||
− | $y_2(t = 0) \ =$ { 0.996 3% } | + | $y_2(t = 0) \ = \ $ { 0.996 3% } |
− | {Welche Aussagen treffen bezüglich der Signale | + | {Welche Aussagen treffen bezüglich der Signale $x_3(t)$ und $y_3(t)$ zu? |
|type="[]"} | |type="[]"} | ||
- $y_3(t)$ weist gegenüber $x_3(t)$ keine Verzerrungen auf. | - $y_3(t)$ weist gegenüber $x_3(t)$ keine Verzerrungen auf. |
Version vom 8. März 2018, 16:49 Uhr
Der so genannte Zweiwegekanal wird durch folgende Impulsantwort charakterisiert (mit $T_1 < T_2$):
- $$h(t) = z_1 \cdot \delta ( t - T_1) + z_2 \cdot \delta ( t - T_2).$$
- Bis auf wenige Kombinationen der Systemparameter $z_1$, $T_1$, $z_2$ und $T_2$ wird dieser Kanal zu linearen Verzerrungen führen.
- Man spricht nur dann von einem verzerrungsfreien Kanal, wenn durch ihn kein einziges Eingangssignal verzerrt wird. Das bedeutet:
- Auch bei verzerrendem Kanal kann es Sonderfälle geben, bei denen tatsächlich $y(t) = \alpha \cdot x(t - \tau)$ gilt.
Als Testsignale werden an den Systemeingang angelegt:
- ein Diracpuls $x_1(t)$ im Zeitabstand $T_0 = 1 \ \rm ms$ gemäß
- $$x_1(t) = \sum_{n = - \infty}^{+\infty} \delta ( t - n \cdot T_0) ,$$
- dessen Spektralfunktion ebenfalls ein Diracpuls ist, und zwar mit Abstand $f_0 = 1/T_0 = 1 \ \rm kHz$:
- $$X_1(f) = T_0 \cdot \sum_{k = - \infty}^{+\infty} \delta ( f - k \cdot f_0) ,$$
- ein Cosinussignal mit der Frequenz $f_2 = 250 \ \rm Hz$:
- $$x_2(t) = \cos(2 \pi \cdot f_2 \cdot t) ,$$
- die Summe zweier Cosinussignale mit den Frequenzen $f_2 = 250 \ \rm Hz$ und $f_3 = 1250 \ \rm Hz$:
- $$x_3(t) = \cos(2 \pi \cdot f_2 \cdot t) + \cos(2 \pi \cdot f_3 \cdot t) .$$
Hinweise:
- Die Aufgabe gehört zum Kapitel Lineare Verzerrungen.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
- Um Ihnen einige Rechnungen zu ersparen, wird das Ergebnis für den Parametersatz $z_1 = 1$, $T_1 = 0$, $z_2 =0.5$, $T_2 = 1 \ \rm ms$ angegeben:
- $$|H(f = f_2)| = |H(f = f_3)| = \sqrt{1.25} \approx 1.118, \; \; \; \; b(f = f_2) = b(f = f_3) = \arctan (0.5) \approx 0.464.$$
Fragebogen
Musterlösung
und es wird $y(t) = z_1 \cdot x(t- T_1)$ gelten. Dagegen wird der Kanal immer dann zu linearen Verzerrungen führen, wenn gleichzeitig $z_1$ und $z_2$ von $0$ verschieden sind. Richtig sind demnach die Aussagen 1 und 2.
(2) Die Fouriertransformation der Impulsantwort $h(t)$ führt auf die Gleichung:
$$H(f) = z_1\cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f T_1}+ z_2\cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f T_2}
.$$
Mit erhält man daraus: $$H(f) =1 + 0.5 \cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f T_2}.$$
Aufgeschlüsselt nach Real– und Imaginärteil liefert dies: $${\rm Re}[H(f)] = 1 + 0.5 \cdot \cos(2 \pi f \cdot 1\,{\rm ms}),$$ $${\rm Im}[H(f)] = -0.5 \cdot \sin(2 \pi f \cdot 1\,{\rm ms}).$$
Bei der Frequenz $f = f_1 =1 \ \rm kHz$ – und auch allen Vielfachen davon – ist der Realteil gleich 1.5 und der Imaginärteil verschwindet.
(3) Aus diesem Ergebnis folgt weiter, dass bei allen Vielfachen von $f_1 =1 \ \rm kHz$ die Betragsfunktion $|H(f)|$ = 1.5 und die Phasenfunktion $b(f) = 0$ ist. Damit ist für diese diskreten Frequenzwerte auch die Phasenlaufzeit jeweils $0$.
Da aber das Spektrum $X_1(f)$ des Diracpulses genau bei diesen Frequenzen Spektrallinien aufweist, gilt $y_1(t) = 1.5 \cdot x_1(t)$. Damit ist allein die erste Antwort richtig.
(4) Die Betragsfunktion lautet:
$$|H(f)| = \sqrt{{\rm Re}[H(f)]^2 + {\rm Im}[H(f)]^2} $$
$$ßRightarrow \; |H(f)| = \sqrt{1 + 0.25 \cdot \cos^2(2 \pi f \cdot T_2)+ \cos(2 \pi f \cdot T_2) + 0.25 \cdot \sin^2(2 \pi f \cdot T_2)}
= \sqrt{1.25 + \cos(2 \pi f \cdot T_2) }.$$
Für die Frequenz $f_2 =0.25 \ \rm kHz$ erhält man somit: $$|H(f)| = \sqrt{1.25 + \cos(\frac{\pi}{2} ) }= \sqrt{1.25} = 1.118.$$
Die Phasenfunktion lautet allgemein bzw. bei der Frequenz $f_2 =0.25 \ \rm kHz$: $$b(f) = - {\rm arctan}\hspace{0.1cm}\frac{{\rm Im}[H(f)]}{{\rm Re}[H(f)]} = - {\rm arctan}\hspace{0.1cm}\frac{-0.5 \cdot \sin(2 \pi f T_2)}{1+0.5 \cdot \cos(2 \pi f T_2)},$$ $$b(f = f_2) = - {\rm arctan}\hspace{0.1cm}\frac{-0.5 \cdot \sin( \pi/2)}{1+0.5 \cdot \cos(\pi/2)}={\rm arctan}\hspace{0.1cm}\frac{0.5}{1} = 0.464.$$
Damit beträgt die Phasenlaufzeit für diese Frequenz: $$\tau_2 = \frac {b(f_2)}{2 \pi f_2} = \frac {0.464}{2 \pi \cdot 0.25\,{\rm kHz}} \approx 0.3\,{\rm ms},$$
und es gilt für das Ausgangssignal: $$y_2(t) = 1.118 \cdot \cos(2 \pi \cdot 0.25\,{\rm kHz}\cdot (t - 0.3\,{\rm ms})).$$
Der Signalwert zum Nullzeitpunkt ist somit: $$y_2(t=0) = 1.118 \cdot \cos(-2 \pi \cdot 0.25\,{\rm kHz} \cdot 0.3\,{\rm ms}) \approx 1.118 \cdot 0.891 \hspace{0.15cm}\underline{= 0.996}.$$
(5) Beide Frequenzen werden mit dem gleichen Dämpfungsfaktor $\alpha = 1.118$ beaufschlagt; daher sind keine Dämpfungsverzerrungen festzustellen. Mit $f_3 = 1.25 \ \rm kHz$ und $T_2 = 1 \ \rm ms$ ergibt sich für die Phasenfunktion:
$$b(f = f_3) = - {\rm arctan}\hspace{0.1cm}\frac{-0.5 \cdot \sin(
2.5 \pi)}{1+0.5 \cdot \cos(2.5 \pi)}= 0.464 = b(f = f_2),$$
also genau der gleiche Wert wie bei der Frequenz $f_2 = 0.25 \ \rm kHz$. Trotzdem kommt es aber nun zu Phasenverzerrungen, da für $f_3$ die Phasenlaufzeit nur mehr $\tau = 60 \ μ \rm s$ beträgt.
Für das Ausgangssignal kann also geschrieben werden: $$y_3(t) = 1.118 \cdot \cos(2 \pi f_2 \cdot (t - 0.3\,{\rm ms}) + 1.118 \cdot \cos(2 \pi f_3 \cdot (t - 0.06\,{\rm ms})$$ $$\Rightarrow \; \; y_3(t) = 1.118 \cdot \cos(2 \pi f_2 \cdot t - 27^\circ) + 1.118 \cdot \cos(2 \pi f_3 \cdot t - 27^\circ).$$
Es gibt also Phasenverzerrungen ⇒ Antwort 3, obwohl für beide Schwingungen $\varphi_2 = \varphi_3= 27^\circ$ gilt. Damit keine Phasenverzerrungen auftreten, müssten
- die Phasenlaufzeiten $\tau_2$ und $\tau_3$ gleich sein,
- die Phasenwerte $\varphi_2$ und $\varphi_3$ linear mit den zugehörigen Frequenzen ansteigen.