Informationstheorie/Verschiedene Entropien zweidimensionaler Zufallsgrößen: Unterschied zwischen den Versionen
Zeile 15: | Zeile 15: | ||
{{BlaueBox|TEXT= | {{BlaueBox|TEXT= | ||
− | $\text{Zusammenfassende Darstellung des letzten Kapitels:}$ | + | $\text{Zusammenfassende Darstellung des letzten Kapitels:}$ |
+ | |||
Mit dieser Teilmenge $\text{supp}(P_{XY}) ⊂ P_{XY}$ gilt für | Mit dieser Teilmenge $\text{supp}(P_{XY}) ⊂ P_{XY}$ gilt für | ||
*die '''Verbundentropie''' (englisch: ''Joint Entropy''): | *die '''Verbundentropie''' (englisch: ''Joint Entropy''): | ||
Zeile 33: | Zeile 34: | ||
$\text{Beispiel 1:}$ Wir beziehen uns nochmals auf die Beispiele auf der Seite [[Informationstheorie/Einige_Vorbemerkungen_zu_zweidimensionalen_Zufallsgrößen#Verbundwahrscheinlichkeit_und_Verbundentropie|Verbundwahrscheinlichkeit und Verbundentropie]] im letzten Kapitel. | $\text{Beispiel 1:}$ Wir beziehen uns nochmals auf die Beispiele auf der Seite [[Informationstheorie/Einige_Vorbemerkungen_zu_zweidimensionalen_Zufallsgrößen#Verbundwahrscheinlichkeit_und_Verbundentropie|Verbundwahrscheinlichkeit und Verbundentropie]] im letzten Kapitel. | ||
− | Bei der 2D–Wahrscheinlichkeitsfunktion $P_{RB}(R, B)$ im dortigen $\text{Beispiel 5}$ mit den Parametern | + | Bei der 2D–Wahrscheinlichkeitsfunktion $P_{RB}(R, B)$ im dortigen [[Informationstheorie/Einige_Vorbemerkungen_zu_zweidimensionalen_Zufallsgrößen#Verbundwahrscheinlichkeit_und_Verbundentropie|$\text{Beispiel 5}$]] mit den Parametern |
*$R$ ⇒ Augenzahl des roten Würfels und | *$R$ ⇒ Augenzahl des roten Würfels und | ||
*$B$ ⇒ Augenzahl des blauen Würfels | *$B$ ⇒ Augenzahl des blauen Würfels | ||
Zeile 40: | Zeile 41: | ||
sind die Mengen $P_{RB}$ und $\text{supp}(P_{RB})$ identisch. Hier sind alle $6^2 = 36$ Felder mit Werten ungleich Null belegt. | sind die Mengen $P_{RB}$ und $\text{supp}(P_{RB})$ identisch. Hier sind alle $6^2 = 36$ Felder mit Werten ungleich Null belegt. | ||
− | Bei der 2D Wahrscheinlichkeitsfunktion $P_{RS}(R, S)$ im $\text{Beispiel 6}$ mit den Parametern | + | Bei der 2D–Wahrscheinlichkeitsfunktion $P_{RS}(R, S)$ im [[Informationstheorie/Einige_Vorbemerkungen_zu_zweidimensionalen_Zufallsgrößen#Verbundwahrscheinlichkeit_und_Verbundentropie|$\text{Beispiel 6}$]] mit den Parametern |
*$R$ ⇒ Augenzahl des roten Würfels und | *$R$ ⇒ Augenzahl des roten Würfels und | ||
*$S = R + B$ ⇒ Summe der beiden Würfel | *$S = R + B$ ⇒ Summe der beiden Würfel | ||
Zeile 46: | Zeile 47: | ||
gibt es $6 · 11 = 66$ Felder, von denen allerdings viele leer sind, also für die Wahrscheinlichkeit „0” stehen. | gibt es $6 · 11 = 66$ Felder, von denen allerdings viele leer sind, also für die Wahrscheinlichkeit „0” stehen. | ||
− | *Die Teilmenge $\text{supp}(P_{RS})$ beinhaltet dagegen nur die 36 schraffierten Felder mit von Null verschiedenen Wahrscheinlichkeiten. | + | *Die Teilmenge $\text{supp}(P_{RS})$ beinhaltet dagegen nur die $36$ schraffierten Felder mit von Null verschiedenen Wahrscheinlichkeiten. |
*Die Entropie bleibt gleich, ganz egal, ob man die Mittelung über alle Elemente von $P_{RS}$ oder nur über die Elemente von $\text{supp}(P_{RS})$ erstreckt, da für $x → 0$ der Grenzwert $x · \log_2 ({1}/{x}) = 0$ ist.}} | *Die Entropie bleibt gleich, ganz egal, ob man die Mittelung über alle Elemente von $P_{RS}$ oder nur über die Elemente von $\text{supp}(P_{RS})$ erstreckt, da für $x → 0$ der Grenzwert $x · \log_2 ({1}/{x}) = 0$ ist.}} | ||
Zeile 66: | Zeile 67: | ||
{{BlaueBox|TEXT= | {{BlaueBox|TEXT= | ||
$\text{Definitionen:}$ | $\text{Definitionen:}$ | ||
− | Die '''bedingte Entropie''' (englisch: ''Conditional Entropy'') der Zufallsgröße $X$ unter der Bedingung $Y$ lautet: | + | *Die '''bedingte Entropie''' (englisch: ''Conditional Entropy'') der Zufallsgröße $X$ unter der Bedingung $Y$ lautet: |
:$$H(X \hspace{-0.05cm}\mid \hspace{-0.05cm} Y) = {\rm E} \hspace{-0.1cm}\left [ {\rm log}_2 \hspace{0.1cm}\frac{1}{P_{\hspace{0.03cm}X \mid \hspace{0.03cm} Y} (X \hspace{-0.05cm}\mid \hspace{-0.05cm} Y)}\right ] = \hspace{-0.2cm} \sum_{(x, y) \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp} (P_{XY}\hspace{-0.08cm})} | :$$H(X \hspace{-0.05cm}\mid \hspace{-0.05cm} Y) = {\rm E} \hspace{-0.1cm}\left [ {\rm log}_2 \hspace{0.1cm}\frac{1}{P_{\hspace{0.03cm}X \mid \hspace{0.03cm} Y} (X \hspace{-0.05cm}\mid \hspace{-0.05cm} Y)}\right ] = \hspace{-0.2cm} \sum_{(x, y) \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp} (P_{XY}\hspace{-0.08cm})} | ||
Zeile 73: | Zeile 74: | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | In gleicher Weise erhält man für die zweite bedingte Entropie: | + | *In gleicher Weise erhält man für die '''zweite bedingte Entropie''': |
:$$H(Y \hspace{-0.1cm}\mid \hspace{-0.05cm} X) = {\rm E} \hspace{-0.1cm}\left [ {\rm log}_2 \hspace{0.1cm}\frac{1}{P_{\hspace{0.03cm}Y\hspace{0.03cm} \mid \hspace{0.01cm} X} (Y \hspace{-0.08cm}\mid \hspace{-0.05cm}X)}\right ] =\hspace{-0.2cm} \sum_{(x, y) \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp} (P_{XY}\hspace{-0.08cm})} | :$$H(Y \hspace{-0.1cm}\mid \hspace{-0.05cm} X) = {\rm E} \hspace{-0.1cm}\left [ {\rm log}_2 \hspace{0.1cm}\frac{1}{P_{\hspace{0.03cm}Y\hspace{0.03cm} \mid \hspace{0.01cm} X} (Y \hspace{-0.08cm}\mid \hspace{-0.05cm}X)}\right ] =\hspace{-0.2cm} \sum_{(x, y) \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp} (P_{XY}\hspace{-0.08cm})} | ||
Zeile 85: | Zeile 86: | ||
Für die bedingten Entropien gibt es folgende Begrenzungen: | Für die bedingten Entropien gibt es folgende Begrenzungen: | ||
*Sowohl $H(X|Y)$ als auch $H(Y|X)$ sind stets größer oder gleich Null. Aus $H(X|Y) = 0$ folgt direkt auch $H(Y|X) = 0$. Beides ist nur für [[Stochastische_Signaltheorie/Mengentheoretische_Grundlagen#Disjunkte_Mengen|disjunkte Mengen]] $X$ und $Y$ möglich. | *Sowohl $H(X|Y)$ als auch $H(Y|X)$ sind stets größer oder gleich Null. Aus $H(X|Y) = 0$ folgt direkt auch $H(Y|X) = 0$. Beides ist nur für [[Stochastische_Signaltheorie/Mengentheoretische_Grundlagen#Disjunkte_Mengen|disjunkte Mengen]] $X$ und $Y$ möglich. | ||
− | *Es gilt stets $H(X|Y) ≤ H(X)$ sowie $H(Y|X) ≤ H(Y)$. Diese | + | *Es gilt stets $H(X|Y) ≤ H(X)$ sowie $H(Y|X) ≤ H(Y)$. Diese Aussagen sind einleuchtend, wenn man sich bewusst macht, dass man für „Entropie” synonym auch „Unsicherheit” verwenden kann. |
*Denn: Die Unsicherheit bezüglich der Menge $X$ kann nicht dadurch größer werden, dass man $Y$ kennt. Außer bei statistischer Unabhängigkeit ⇒ $H(X|Y) = H(X)$ gilt stets $H(X|Y) < H(X)$. | *Denn: Die Unsicherheit bezüglich der Menge $X$ kann nicht dadurch größer werden, dass man $Y$ kennt. Außer bei statistischer Unabhängigkeit ⇒ $H(X|Y) = H(X)$ gilt stets $H(X|Y) < H(X)$. | ||
− | *Wegen $H(X) ≤ H(XY)$ | + | *Wegen $H(X) ≤ H(XY)$ und $H(Y) ≤ H(XY)$ gilt somit auch $H(X|Y) ≤ H(XY)$ und $H(Y|X) ≤ H(XY)$. Eine bedingte Entropie kann also nie größer werden als die Verbundentropie. |
Zeile 96: | Zeile 97: | ||
Außen sind die beiden bedingten Wahrscheinlichkeitsfunktionen gezeichnet: | Außen sind die beiden bedingten Wahrscheinlichkeitsfunktionen gezeichnet: | ||
− | *Links | + | *Links angegeben ist die bedingte Wahrscheinlichkeitsfunktion $P_{S \vert R}(⋅) = P_{SR}(⋅)/P_R(⋅)$. Wegen $P_R(R) = \big [1/6, \ 1/6, \ 1/6, \ 1/6, \ 1/6, \ 1/6 \big ]$ steht hier in allen schraffierten Feldern ⇒ $\text{supp}(P_{S\vert R}) = \text{supp}(P_{R\vert S})$ der gleiche Wahrscheinlichkeitswert $1/6$. Daraus folgt für die bedingte Entropie: |
:$$H(S \hspace{-0.1cm}\mid \hspace{-0.13cm} R) = \hspace{-0.2cm} \sum_{(r, s) \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp} (P_{RS})} | :$$H(S \hspace{-0.1cm}\mid \hspace{-0.13cm} R) = \hspace{-0.2cm} \sum_{(r, s) \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp} (P_{RS})} | ||
Zeile 103: | Zeile 104: | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | *Rechts die bedingte Wahrscheinlichkeitsfunktion $P_{R\vert S}(⋅) = P_{RS}(⋅)/P_S(⋅)$ mit $P_S(⋅)$. Gemäß $\text{Beispiel 6}$ ergeben sich die gleichen Felder ungleich Null ⇒ $\text{supp}(P_{R\vert S}) = \text{supp}(P_{S\vert R})$. Die Wahrscheinlichkeitswerte nehmen nun aber von der Mitte ($1/6$) zu den Rändern hin bis zur Wahrscheinlichkeit $1$ in den Ecken kontinuierlich zu. Daraus folgt: | + | *Rechts ist die bedingte Wahrscheinlichkeitsfunktion $P_{R\vert S}(⋅) = P_{RS}(⋅)/P_S(⋅)$ mit $P_S(⋅)$ angegeben. Gemäß $\text{Beispiel 6}$ ergeben sich die gleichen Felder ungleich Null ⇒ $\text{supp}(P_{R\vert S}) = \text{supp}(P_{S\vert R})$. Die Wahrscheinlichkeitswerte nehmen nun aber von der Mitte ($1/6$) zu den Rändern hin bis zur Wahrscheinlichkeit $1$ in den Ecken kontinuierlich zu. Daraus folgt: |
:$$H(R \hspace{-0.1cm}\mid \hspace{-0.13cm} S) = \frac{1}{36} \cdot {\rm log}_2 \hspace{0.1cm} (6) + | :$$H(R \hspace{-0.1cm}\mid \hspace{-0.13cm} S) = \frac{1}{36} \cdot {\rm log}_2 \hspace{0.1cm} (6) + | ||
− | \frac{2}{36} \cdot \sum_{i=1}^5 \ | + | \frac{2}{36} \cdot \sum_{i=1}^5 \big [ i \cdot {\rm log}_2 \hspace{0.1cm} (i) \big ]= 1.896\,{\rm bit} \hspace{0.05cm}.$$ |
Für die bedingten Wahrscheinlichkeiten der 2D–Zufallsgröße $RB$ gemäß $\text{Beispiel 5}$ erhält man dagegen wegen $P_{RB}(⋅) = P_R(⋅) · P_B(⋅)$: | Für die bedingten Wahrscheinlichkeiten der 2D–Zufallsgröße $RB$ gemäß $\text{Beispiel 5}$ erhält man dagegen wegen $P_{RB}(⋅) = P_R(⋅) · P_B(⋅)$: | ||
Zeile 115: | Zeile 116: | ||
− | ==Transinformation zwischen zwei Zufallsgrößen | + | ==Transinformation zwischen zwei Zufallsgrößen== |
<br> | <br> | ||
− | Wir betrachten die Zufallsgröße $XY$ mit der 2D–Wahrscheinlichkeitsfunktion $P_{XY}(X, Y)$. Bekannt seien auch die 1D–Funktionen $P_X(X)$ und $P_Y(Y)$. Nun stellen sich folgende Fragen: | + | Wir betrachten die Zufallsgröße $XY$ mit der 2D–Wahrscheinlichkeitsfunktion $P_{XY}(X, Y)$. Bekannt seien auch die 1D–Funktionen $P_X(X)$ und $P_Y(Y)$. |
+ | |||
+ | Nun stellen sich folgende Fragen: | ||
*Wie vermindert die Kenntnis der Zufallsgröße $Y$ die Unsicherheit bezüglich $X$? | *Wie vermindert die Kenntnis der Zufallsgröße $Y$ die Unsicherheit bezüglich $X$? | ||
*Wie vermindert die Kenntnis der Zufallsgröße $X$ die Unsicherheit bezüglich $Y$? | *Wie vermindert die Kenntnis der Zufallsgröße $X$ die Unsicherheit bezüglich $Y$? | ||
Zeile 125: | Zeile 128: | ||
{{BlaueBox|TEXT= | {{BlaueBox|TEXT= | ||
− | $\text{Definition:}$ Die '''Transinformation''' (englisch: ''Mutual Information'') zwischen den Zufallsgrößen $X$ und $Y$ – beide über dem gleichen Alphabet – ist gegeben | + | $\text{Definition:}$ Die '''Transinformation''' (englisch: ''Mutual Information'') zwischen den Zufallsgrößen $X$ und $Y$ – beide über dem gleichen Alphabet – ist wie folgt gegeben: |
:$$I(X;Y) = {\rm E} \hspace{-0.1cm}\left [ {\rm log}_2 \hspace{0.08cm} \frac{P_{XY}(X, Y)} | :$$I(X;Y) = {\rm E} \hspace{-0.1cm}\left [ {\rm log}_2 \hspace{0.08cm} \frac{P_{XY}(X, Y)} | ||
Zeile 132: | Zeile 135: | ||
{P_{X}(x) \cdot P_{Y}(y) } \hspace{0.01cm}.$$ | {P_{X}(x) \cdot P_{Y}(y) } \hspace{0.01cm}.$$ | ||
− | Ein Vergleich mit dem [[Informationstheorie/Einige_Vorbemerkungen_zu_zweidimensionalen_Zufallsgrößen#Einf.C3.BChrungsbeispiel_zur_statistischen_Abh.C3.A4ngigkeit_von_Zufallsgr.C3.B6.C3.9Fen|letzten Kapitel]] zeigt, dass die Transinformation auch als [[Informationstheorie/Einige_Vorbemerkungen_zu_zweidimensionalen_Zufallsgrößen#Relative_Entropie_.E2.80.93_Kullback.E2.80.93Leibler.E2.80.93Distanz|Kullback–Leibler–Distanz]] zwischen der 2D–PMF $P_{XY} | + | Ein Vergleich mit dem [[Informationstheorie/Einige_Vorbemerkungen_zu_zweidimensionalen_Zufallsgrößen#Einf.C3.BChrungsbeispiel_zur_statistischen_Abh.C3.A4ngigkeit_von_Zufallsgr.C3.B6.C3.9Fen|letzten Kapitel]] zeigt, dass die Transinformation auch als [[Informationstheorie/Einige_Vorbemerkungen_zu_zweidimensionalen_Zufallsgrößen#Relative_Entropie_.E2.80.93_Kullback.E2.80.93Leibler.E2.80.93Distanz|Kullback–Leibler–Distanz]] zwischen der 2D–PMF $P_{XY}$ und dem Produkt $P_X · P_Y$ geschrieben werden kann: |
:$$I(X;Y) = D(P_{XY} \hspace{0.05cm}\vert \vert \hspace{0.05cm} P_X \cdot P_Y) \hspace{0.05cm}.$$ | :$$I(X;Y) = D(P_{XY} \hspace{0.05cm}\vert \vert \hspace{0.05cm} P_X \cdot P_Y) \hspace{0.05cm}.$$ | ||
Zeile 139: | Zeile 142: | ||
− | Sucht man in einem Wörterbuch die Übersetzung für „mutual”, so findet man unter Anderem die Begriffe „gemeinsam”, „gegenseitig”, „beidseitig” und „wechselseitig”. Und ebenso sind in Fachbüchern für $I(X; Y)$ auch die Bezeichnungen ''gemeinsame Entropie'' und ''gegenseitige Entropie'' üblich. Wir sprechen aber im Folgenden durchgängig von der ''Transinformation'' $I(X; Y)$ und | + | Sucht man in einem Wörterbuch die Übersetzung für „mutual”, so findet man unter Anderem die Begriffe „gemeinsam”, „gegenseitig”, „beidseitig” und „wechselseitig”. Und ebenso sind in Fachbüchern für $I(X; Y)$ auch die Bezeichnungen ''gemeinsame Entropie'' und ''gegenseitige Entropie'' üblich. Wir sprechen aber im Folgenden durchgängig von der ''Transinformation'' $I(X; Y)$ und versuchen nun eine Interpretation dieser Größe: |
*Durch Aufspalten des $\log_2$–Arguments entsprechend | *Durch Aufspalten des $\log_2$–Arguments entsprechend | ||
Zeile 146: | Zeile 149: | ||
{P_{Y}(Y) }{P_{XY}(X, Y)} \right ] $$ | {P_{Y}(Y) }{P_{XY}(X, Y)} \right ] $$ | ||
− | :erhält man unter Verwendung von $P_{X|Y}( | + | :erhält man unter Verwendung von $P_{X|Y}(\cdot) = P_{XY}(\cdot)/P_Y(Y)$: |
:$$I(X;Y) = H(X) - H(X \hspace{-0.1cm}\mid \hspace{-0.1cm} Y) \hspace{0.05cm}.$$ | :$$I(X;Y) = H(X) - H(X \hspace{-0.1cm}\mid \hspace{-0.1cm} Y) \hspace{0.05cm}.$$ | ||
− | *Das heißt: Die Unsicherheit hinsichtlich der Zufallsgröße $X$ ⇒ Entropie $H(X)$ vermindert sich bei Kenntnis von $Y$ um den Betrag $H(X|Y)$. Der Rest ist die Transinformation $I(X; Y)$. | + | *Das heißt: Die Unsicherheit hinsichtlich der Zufallsgröße $X$ ⇒ Entropie $H(X)$ vermindert sich bei Kenntnis von $Y$ um den Betrag $H(X|Y)$. Der Rest ist die Transinformation $I(X; Y)$. |
*Bei anderer Aufspaltung kommt man zum Ergebnis | *Bei anderer Aufspaltung kommt man zum Ergebnis | ||
:$$I(X;Y) = H(Y) - H(Y \hspace{-0.1cm}\mid \hspace{-0.1cm} X) \hspace{0.05cm}.$$ | :$$I(X;Y) = H(Y) - H(Y \hspace{-0.1cm}\mid \hspace{-0.1cm} X) \hspace{0.05cm}.$$ | ||
Zeile 179: | Zeile 182: | ||
Man erkennt aus dieser Darstellung: | Man erkennt aus dieser Darstellung: | ||
*Die Entropie $H(R) = \log_2 (6) = 2.585\ \rm bit$ ist genau halb so groß wie die Verbundentropie $H(RS)$. Weil: | *Die Entropie $H(R) = \log_2 (6) = 2.585\ \rm bit$ ist genau halb so groß wie die Verbundentropie $H(RS)$. Weil: | ||
− | *Kennt man $R$, so liefert $S$ genau die gleiche Information wie die Zufallsgröße $B$, nämlich $H(S \hspace{0.05cm} \vert \hspace{0.05cm} R) = H(B) = \log_2 (6) = 2.585\ \rm bit$. ''Hinweis'': $H(R)$ = $H(S \hspace{0.05cm} \vert \hspace{0.05cm} R)$ gilt | + | *Kennt man $R$, so liefert $S$ genau die gleiche Information wie die Zufallsgröße $B$, nämlich $H(S \hspace{0.05cm} \vert \hspace{0.05cm} R) = H(B) = \log_2 (6) = 2.585\ \rm bit$. ''Hinweis'': $H(R)$ = $H(S \hspace{0.05cm} \vert \hspace{0.05cm} R)$ gilt allerdings nur in diesem Beispiel, nicht allgemein. |
− | *Die Entropie $H(S) = 3.274 \ \rm bit$ ist im vorliegenden Beispiel erwartungsgemäß größer als $H(R)$. | + | *Die Entropie $H(S) = 3.274 \ \rm bit$ ist im vorliegenden Beispiel erwartungsgemäß größer als $H(R)= 2.585\ \rm bit$. |
*Wegen $H(S) + H(R \hspace{0.05cm} \vert \hspace{0.05cm} S) = H(R) + H(S \hspace{0.05cm} \vert \hspace{0.05cm} R)$ muss deshalb $H(R \hspace{0.05cm} \vert \hspace{0.05cm} S)$ gegenüber $H(S \hspace{0.05cm} \vert \hspace{0.05cm} R)$ um den gleichen Betrag $I(R; S) = 0.689 \ \rm bit$ kleiner sein wie $H(R)$ gegenüber $H(S)$. | *Wegen $H(S) + H(R \hspace{0.05cm} \vert \hspace{0.05cm} S) = H(R) + H(S \hspace{0.05cm} \vert \hspace{0.05cm} R)$ muss deshalb $H(R \hspace{0.05cm} \vert \hspace{0.05cm} S)$ gegenüber $H(S \hspace{0.05cm} \vert \hspace{0.05cm} R)$ um den gleichen Betrag $I(R; S) = 0.689 \ \rm bit$ kleiner sein wie $H(R)$ gegenüber $H(S)$. | ||
*Die Transinformation (englisch: ''Mutual Information'') zwischen den Zufallsgrößen $R$ und $S$ ergibt sich aber auch aus der Gleichung | *Die Transinformation (englisch: ''Mutual Information'') zwischen den Zufallsgrößen $R$ und $S$ ergibt sich aber auch aus der Gleichung |
Version vom 9. Oktober 2018, 14:35 Uhr
Inhaltsverzeichnis
Definition der Entropie unter Verwendung von supp(PXY)
Wir fassen die Ergebnisse des letzten Kapitels nochmals kurz zusammen, wobei wir von der zweidimensionalen Zufallsgröße $XY$ mit der Wahrscheinlichkeitsfunktion $P_{XY}(X, Y)$ ausgehen. Gleichzeitig verwenden wir die Schreibweise
- $${\rm supp} (P_{XY}) = \big \{ \hspace{0.05cm}(x, y) \in XY \hspace{0.05cm}, \hspace{0.3cm} {\rm wobei} \hspace{0.15cm} P_{XY}(X, Y) \ne 0 \hspace{0.05cm} \big \} \hspace{0.05cm};$$
$\text{Zusammenfassende Darstellung des letzten Kapitels:}$
Mit dieser Teilmenge $\text{supp}(P_{XY}) ⊂ P_{XY}$ gilt für
- die Verbundentropie (englisch: Joint Entropy):
- $$H(XY) = {\rm E}\hspace{-0.1cm} \left [ {\rm log}_2 \hspace{0.1cm} \frac{1}{P_{XY}(X, Y)}\right ] =\hspace{-0.2cm} \sum_{(x, y) \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp} (P_{XY}\hspace{-0.05cm})} \hspace{-0.6cm} P_{XY}(x, y) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{P_{XY}(x, y)} \hspace{0.05cm}.$$
- die Entropien der 1D–Zufallsgrößen $X$ und $Y$:
- $$H(X) = {\rm E}\hspace{-0.1cm} \left [ {\rm log}_2 \hspace{0.1cm} \frac{1}{P_{X}(X)}\right ] =\hspace{-0.2cm} \sum_{x \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp} (P_{X})} \hspace{-0.2cm} P_{X}(x) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{P_{X}(x)} \hspace{0.05cm},$$
- $$H(Y) = {\rm E}\hspace{-0.1cm} \left [ {\rm log}_2 \hspace{0.1cm} \frac{1}{P_{Y}(Y)}\right ] =\hspace{-0.2cm} \sum_{y \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp} (P_{Y})} \hspace{-0.2cm} P_{Y}(y) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{P_{Y}(y)} \hspace{0.05cm}.$$
$\text{Beispiel 1:}$ Wir beziehen uns nochmals auf die Beispiele auf der Seite Verbundwahrscheinlichkeit und Verbundentropie im letzten Kapitel.
Bei der 2D–Wahrscheinlichkeitsfunktion $P_{RB}(R, B)$ im dortigen $\text{Beispiel 5}$ mit den Parametern
- $R$ ⇒ Augenzahl des roten Würfels und
- $B$ ⇒ Augenzahl des blauen Würfels
sind die Mengen $P_{RB}$ und $\text{supp}(P_{RB})$ identisch. Hier sind alle $6^2 = 36$ Felder mit Werten ungleich Null belegt.
Bei der 2D–Wahrscheinlichkeitsfunktion $P_{RS}(R, S)$ im $\text{Beispiel 6}$ mit den Parametern
- $R$ ⇒ Augenzahl des roten Würfels und
- $S = R + B$ ⇒ Summe der beiden Würfel
gibt es $6 · 11 = 66$ Felder, von denen allerdings viele leer sind, also für die Wahrscheinlichkeit „0” stehen.
- Die Teilmenge $\text{supp}(P_{RS})$ beinhaltet dagegen nur die $36$ schraffierten Felder mit von Null verschiedenen Wahrscheinlichkeiten.
- Die Entropie bleibt gleich, ganz egal, ob man die Mittelung über alle Elemente von $P_{RS}$ oder nur über die Elemente von $\text{supp}(P_{RS})$ erstreckt, da für $x → 0$ der Grenzwert $x · \log_2 ({1}/{x}) = 0$ ist.
Bedingte Wahrscheinlichkeit und bedingte Entropie
Im Buch „Stochastische Signaltheorie” wurden für den Fall zweier Ereignisse $X$ und $Y$ die folgenden bedingten Wahrscheinlichkeiten angegeben ⇒ Satz von Bayes:
- $${\rm Pr} (X \hspace{-0.05cm}\mid \hspace{-0.05cm} Y) = \frac{{\rm Pr} (X \cap Y)}{{\rm Pr} (Y)} \hspace{0.05cm}, \hspace{0.5cm} {\rm Pr} (Y \hspace{-0.05cm}\mid \hspace{-0.05cm} X) = \frac{{\rm Pr} (X \cap Y)}{{\rm Pr} (X)} \hspace{0.05cm}.$$
Angewendet auf Wahrscheinlichkeitsfunktionen erhält man somit:
- $$P_{\hspace{0.03cm}X \mid \hspace{0.03cm} Y} (X \hspace{-0.05cm}\mid \hspace{-0.05cm} Y) = \frac{P_{XY}(X, Y)}{P_{Y}(Y)} \hspace{0.05cm}, \hspace{0.5cm} P_{\hspace{0.03cm}Y \mid \hspace{0.03cm} X} (Y \hspace{-0.05cm}\mid \hspace{-0.05cm} X) = \frac{P_{XY}(X, Y)}{P_{X}(X)} \hspace{0.05cm}.$$
Analog zur Verbundentropie $H(XY)$ lassen sich hier folgende Entropiefunktionen ableiten:
$\text{Definitionen:}$
- Die bedingte Entropie (englisch: Conditional Entropy) der Zufallsgröße $X$ unter der Bedingung $Y$ lautet:
- $$H(X \hspace{-0.05cm}\mid \hspace{-0.05cm} Y) = {\rm E} \hspace{-0.1cm}\left [ {\rm log}_2 \hspace{0.1cm}\frac{1}{P_{\hspace{0.03cm}X \mid \hspace{0.03cm} Y} (X \hspace{-0.05cm}\mid \hspace{-0.05cm} Y)}\right ] = \hspace{-0.2cm} \sum_{(x, y) \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp} (P_{XY}\hspace{-0.08cm})} \hspace{-0.6cm} P_{XY}(x, y) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{P_{\hspace{0.03cm}X \mid \hspace{0.03cm} Y} (x \hspace{-0.05cm}\mid \hspace{-0.05cm} y)}=\hspace{-0.2cm} \sum_{(x, y) \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp} (P_{XY}\hspace{-0.08cm})} \hspace{-0.6cm} P_{XY}(x, y) \cdot {\rm log}_2 \hspace{0.1cm} \frac{P_{Y}(y)}{P_{XY}(x, y)} \hspace{0.05cm}.$$
- In gleicher Weise erhält man für die zweite bedingte Entropie:
- $$H(Y \hspace{-0.1cm}\mid \hspace{-0.05cm} X) = {\rm E} \hspace{-0.1cm}\left [ {\rm log}_2 \hspace{0.1cm}\frac{1}{P_{\hspace{0.03cm}Y\hspace{0.03cm} \mid \hspace{0.01cm} X} (Y \hspace{-0.08cm}\mid \hspace{-0.05cm}X)}\right ] =\hspace{-0.2cm} \sum_{(x, y) \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp} (P_{XY}\hspace{-0.08cm})} \hspace{-0.6cm} P_{XY}(x, y) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{P_{\hspace{0.03cm}Y\hspace{-0.03cm} \mid \hspace{-0.01cm} X} (y \hspace{-0.05cm}\mid \hspace{-0.05cm} x)}=\hspace{-0.2cm} \sum_{(x, y) \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp} (P_{XY}\hspace{-0.08cm})} \hspace{-0.6cm} P_{XY}(x, y) \cdot {\rm log}_2 \hspace{0.1cm} \frac{P_{X}(x)}{P_{XY}(x, y)} \hspace{0.05cm}.$$
Im Argument der Logarithmusfunktion steht stets eine bedingte Wahrscheinlichkeitsfunktion ⇒ $P_{X\hspace{0.03cm}| \hspace{0.03cm}Y}(·)$ bzw. $P_{Y\hspace{0.03cm}|\hspace{0.03cm}X}(·)$, während zur Erwartungswertbildung die Verbundwahrscheinlichkeit ⇒ $P_{XY}(·)$ benötigt wird.
Für die bedingten Entropien gibt es folgende Begrenzungen:
- Sowohl $H(X|Y)$ als auch $H(Y|X)$ sind stets größer oder gleich Null. Aus $H(X|Y) = 0$ folgt direkt auch $H(Y|X) = 0$. Beides ist nur für disjunkte Mengen $X$ und $Y$ möglich.
- Es gilt stets $H(X|Y) ≤ H(X)$ sowie $H(Y|X) ≤ H(Y)$. Diese Aussagen sind einleuchtend, wenn man sich bewusst macht, dass man für „Entropie” synonym auch „Unsicherheit” verwenden kann.
- Denn: Die Unsicherheit bezüglich der Menge $X$ kann nicht dadurch größer werden, dass man $Y$ kennt. Außer bei statistischer Unabhängigkeit ⇒ $H(X|Y) = H(X)$ gilt stets $H(X|Y) < H(X)$.
- Wegen $H(X) ≤ H(XY)$ und $H(Y) ≤ H(XY)$ gilt somit auch $H(X|Y) ≤ H(XY)$ und $H(Y|X) ≤ H(XY)$. Eine bedingte Entropie kann also nie größer werden als die Verbundentropie.
$\text{Beispiel 2:}$ Wir betrachten die Verbundwahrscheinlichkeiten $P_{RS}(·)$ unseres Würfelexperiments, die im letzten Kapitel als $\text{Beispiel 6}$ ermittelt wurden. In der Mitte der folgenden Grafik ist $P_{RS}(·)$ nochmals angegeben.
Außen sind die beiden bedingten Wahrscheinlichkeitsfunktionen gezeichnet:
- Links angegeben ist die bedingte Wahrscheinlichkeitsfunktion $P_{S \vert R}(⋅) = P_{SR}(⋅)/P_R(⋅)$. Wegen $P_R(R) = \big [1/6, \ 1/6, \ 1/6, \ 1/6, \ 1/6, \ 1/6 \big ]$ steht hier in allen schraffierten Feldern ⇒ $\text{supp}(P_{S\vert R}) = \text{supp}(P_{R\vert S})$ der gleiche Wahrscheinlichkeitswert $1/6$. Daraus folgt für die bedingte Entropie:
- $$H(S \hspace{-0.1cm}\mid \hspace{-0.13cm} R) = \hspace{-0.2cm} \sum_{(r, s) \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp} (P_{RS})} \hspace{-0.6cm} P_{RS}(r, s) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{P_{\hspace{0.03cm}S \hspace{0.03cm} \mid \hspace{0.03cm} R} (s \hspace{-0.05cm}\mid \hspace{-0.05cm} r)} = 36 \cdot \frac{1}{36} \cdot {\rm log}_2 \hspace{0.1cm} (6) = 2.585\,{\rm bit} \hspace{0.05cm}.$$
- Rechts ist die bedingte Wahrscheinlichkeitsfunktion $P_{R\vert S}(⋅) = P_{RS}(⋅)/P_S(⋅)$ mit $P_S(⋅)$ angegeben. Gemäß $\text{Beispiel 6}$ ergeben sich die gleichen Felder ungleich Null ⇒ $\text{supp}(P_{R\vert S}) = \text{supp}(P_{S\vert R})$. Die Wahrscheinlichkeitswerte nehmen nun aber von der Mitte ($1/6$) zu den Rändern hin bis zur Wahrscheinlichkeit $1$ in den Ecken kontinuierlich zu. Daraus folgt:
- $$H(R \hspace{-0.1cm}\mid \hspace{-0.13cm} S) = \frac{1}{36} \cdot {\rm log}_2 \hspace{0.1cm} (6) + \frac{2}{36} \cdot \sum_{i=1}^5 \big [ i \cdot {\rm log}_2 \hspace{0.1cm} (i) \big ]= 1.896\,{\rm bit} \hspace{0.05cm}.$$
Für die bedingten Wahrscheinlichkeiten der 2D–Zufallsgröße $RB$ gemäß $\text{Beispiel 5}$ erhält man dagegen wegen $P_{RB}(⋅) = P_R(⋅) · P_B(⋅)$:
- $$\begin{align*}H(B \hspace{-0.1cm}\mid \hspace{-0.13cm} R) \hspace{-0.15cm} & = \hspace{-0.15cm} H(B) = {\rm log}_2 \hspace{0.1cm} (6) = 2.585\,{\rm bit} \hspace{0.05cm},\\ H(R \hspace{-0.1cm}\mid \hspace{-0.13cm} B) \hspace{-0.15cm} & = \hspace{-0.15cm} H(R) = {\rm log}_2 \hspace{0.1cm} (6) = 2.585\,{\rm bit} \hspace{0.05cm}.\end{align*}$$
Transinformation zwischen zwei Zufallsgrößen
Wir betrachten die Zufallsgröße $XY$ mit der 2D–Wahrscheinlichkeitsfunktion $P_{XY}(X, Y)$. Bekannt seien auch die 1D–Funktionen $P_X(X)$ und $P_Y(Y)$.
Nun stellen sich folgende Fragen:
- Wie vermindert die Kenntnis der Zufallsgröße $Y$ die Unsicherheit bezüglich $X$?
- Wie vermindert die Kenntnis der Zufallsgröße $X$ die Unsicherheit bezüglich $Y$?
Zur Beantwortung benötigen wir eine für die Informationstheorie substantielle Definition:
$\text{Definition:}$ Die Transinformation (englisch: Mutual Information) zwischen den Zufallsgrößen $X$ und $Y$ – beide über dem gleichen Alphabet – ist wie folgt gegeben:
- $$I(X;Y) = {\rm E} \hspace{-0.1cm}\left [ {\rm log}_2 \hspace{0.08cm} \frac{P_{XY}(X, Y)} {P_{X}(X) \cdot P_{Y}(Y) }\right ] =\hspace{-0.25cm} \sum_{(x, y) \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp} (P_{XY})} \hspace{-0.8cm} P_{XY}(x, y) \cdot {\rm log}_2 \hspace{0.08cm} \frac{P_{XY}(x, y)} {P_{X}(x) \cdot P_{Y}(y) } \hspace{0.01cm}.$$
Ein Vergleich mit dem letzten Kapitel zeigt, dass die Transinformation auch als Kullback–Leibler–Distanz zwischen der 2D–PMF $P_{XY}$ und dem Produkt $P_X · P_Y$ geschrieben werden kann:
- $$I(X;Y) = D(P_{XY} \hspace{0.05cm}\vert \vert \hspace{0.05cm} P_X \cdot P_Y) \hspace{0.05cm}.$$
Es ist somit offensichtlich, dass stets $I(X; Y) ≥ 0$ gilt. Wegen der Symmetrie ist auch $I(Y; X)$ = $I(X; Y)$.
Sucht man in einem Wörterbuch die Übersetzung für „mutual”, so findet man unter Anderem die Begriffe „gemeinsam”, „gegenseitig”, „beidseitig” und „wechselseitig”. Und ebenso sind in Fachbüchern für $I(X; Y)$ auch die Bezeichnungen gemeinsame Entropie und gegenseitige Entropie üblich. Wir sprechen aber im Folgenden durchgängig von der Transinformation $I(X; Y)$ und versuchen nun eine Interpretation dieser Größe:
- Durch Aufspalten des $\log_2$–Arguments entsprechend
- $$I(X;Y) = {\rm E} \hspace{-0.1cm}\left [ {\rm log}_2 \hspace{0.1cm} \frac{1} {P_{X}(X) }\right ] - {\rm E} \hspace{-0.1cm}\left [ {\rm log}_2 \hspace{0.1cm} \frac {P_{Y}(Y) }{P_{XY}(X, Y)} \right ] $$
- erhält man unter Verwendung von $P_{X|Y}(\cdot) = P_{XY}(\cdot)/P_Y(Y)$:
- $$I(X;Y) = H(X) - H(X \hspace{-0.1cm}\mid \hspace{-0.1cm} Y) \hspace{0.05cm}.$$
- Das heißt: Die Unsicherheit hinsichtlich der Zufallsgröße $X$ ⇒ Entropie $H(X)$ vermindert sich bei Kenntnis von $Y$ um den Betrag $H(X|Y)$. Der Rest ist die Transinformation $I(X; Y)$.
- Bei anderer Aufspaltung kommt man zum Ergebnis
- $$I(X;Y) = H(Y) - H(Y \hspace{-0.1cm}\mid \hspace{-0.1cm} X) \hspace{0.05cm}.$$
- Ergo: Die Transinformation $I(X; Y)$ ist symmetrisch ⇒ $X$ sagt genau so viel über $Y$ aus wie $Y$ über $X$ ⇒ gegenseitige Information. Das Semikolon weist auf die Gleichberechtigung hin.
$\text{Fazit:}$ Oft werden die hier genannten Gleichungen durch ein Schaubild verdeutlicht, so auch in den folgenden Beispielen. Daraus erkennt man, dass auch folgende Gleichungen zutreffen:
- $$I(X;Y) = H(X) + H(Y) - H(XY) \hspace{0.05cm},$$
- $$I(X;Y) = H(XY) - H(X \hspace{-0.1cm}\mid \hspace{-0.1cm} Y) - H(Y \hspace{-0.1cm}\mid \hspace{-0.1cm} X) \hspace{0.05cm}.$$
$\text{Beispiel 3:}$ Wir kommen (letztmalig) auf das Würfel–Experiment mit dem roten $(R)$ und dem blauen $(B)$ Würfel zurück. Die Zufallsgröße $S$ gibt die Summe der beiden Würfel an: $S = R + B$. Wir betrachten hier die 2D–Zufallsgröße $RS$. In früheren Beispielen haben wir berechnet:
- die Entropien $H(R) = 2.585 \ \rm bit$ und $H(S) = 3.274 \ \rm bit$ ⇒ Beispiel 6 im letzten Kapitel,
- die Verbundentropie $H(RS) = 5.170 \ \rm bit$ ⇒ Beispiel 6 im letzten Kapitel,
- die bedingten Entropien $H(S \hspace{0.05cm} \vert \hspace{0.05cm} R) = 2.585 \ \rm bit$ und $H(R \hspace{0.05cm} \vert \hspace{0.05cm} S) = 1.896 \ \rm bit$ ⇒ Beispiel 2 im vorherigen Abschnitt.
Diese Größen sind in der Grafik zusammengestellt, wobei die Zufallsgröße $R$ durch die Grundfarbe „Rot” und die Summe $S$ durch die Grundfarbe „grün” markiert sind. Bedingte Entropien sind schraffiert. Man erkennt aus dieser Darstellung:
- Die Entropie $H(R) = \log_2 (6) = 2.585\ \rm bit$ ist genau halb so groß wie die Verbundentropie $H(RS)$. Weil:
- Kennt man $R$, so liefert $S$ genau die gleiche Information wie die Zufallsgröße $B$, nämlich $H(S \hspace{0.05cm} \vert \hspace{0.05cm} R) = H(B) = \log_2 (6) = 2.585\ \rm bit$. Hinweis: $H(R)$ = $H(S \hspace{0.05cm} \vert \hspace{0.05cm} R)$ gilt allerdings nur in diesem Beispiel, nicht allgemein.
- Die Entropie $H(S) = 3.274 \ \rm bit$ ist im vorliegenden Beispiel erwartungsgemäß größer als $H(R)= 2.585\ \rm bit$.
- Wegen $H(S) + H(R \hspace{0.05cm} \vert \hspace{0.05cm} S) = H(R) + H(S \hspace{0.05cm} \vert \hspace{0.05cm} R)$ muss deshalb $H(R \hspace{0.05cm} \vert \hspace{0.05cm} S)$ gegenüber $H(S \hspace{0.05cm} \vert \hspace{0.05cm} R)$ um den gleichen Betrag $I(R; S) = 0.689 \ \rm bit$ kleiner sein wie $H(R)$ gegenüber $H(S)$.
- Die Transinformation (englisch: Mutual Information) zwischen den Zufallsgrößen $R$ und $S$ ergibt sich aber auch aus der Gleichung
- $$I(R;S) = H(R) + H(S) - H(RS) = 2.585\,{\rm bit} + 3.274\,{\rm bit} - 5.170\,{\rm bit} = 0.689\,{\rm bit} \hspace{0.05cm}. $$
Bedingte Transinformation
Wir betrachten nun drei Zufallsgrößen $X$, $Y$ und $Z$, die zueinander in Beziehung stehen (können).
$\text{Definition:}$ Die bedingte Transinformation (englisch: Conditional Mutual Information) zwischen den Zufallsgrößen $X$ und $Y$ bei gegebenem $Z = z$ lautet:
- $$I(X;Y \hspace{0.05cm}\vert\hspace{0.05cm} Z = z) = H(X\hspace{0.05cm}\vert\hspace{0.05cm} Z = z) - H(X\vert\hspace{0.05cm}Y ,\hspace{0.05cm} Z = z) \hspace{0.05cm}.$$
Dagegen bezeichnet man als die bedingte Transinformation zwischen den Zufallsgrößen $X$ und $Y$ für die Zufallsgröße $Z$ allgemein nach Mittelung über alle $z \in Z$:
- $$I(X;Y \hspace{0.05cm}\vert\hspace{0.05cm} Z ) = H(X\hspace{0.05cm}\vert\hspace{0.05cm} Z ) - H(X\vert\hspace{0.05cm}Y Z )= \hspace{-0.3cm} \sum_{z \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp} (P_{Z})} \hspace{-0.25cm} P_{Z}(z) \cdot I(X;Y \hspace{0.05cm}\vert\hspace{0.05cm} Z = z) \hspace{0.05cm}.$$
$P_Z(Z)$ ist die Wahrscheinlichkeitsfunktion (PMF) der Zufallsgröße $Z$ und $P_Z(z)$ die Wahrscheinlichkeit für die Realisierung $Z = z$.
$\text{Bitte beachten Sie:}$
- Für die bedingte Entropie gilt bekanntlich die Größenrelation $H(X\hspace{0.05cm}\vert\hspace{0.05cm}Z) ≤ H(X)$.
- Für die Transinformation gilt diese Größenrelation nicht unbedingt:
- $I(X; Y\hspace{0.05cm}\vert\hspace{0.05cm}Z)$ kann kleiner, gleich, aber auch größer sein als $I(X; Y)$.
$\text{Beispiel 4:}$ Wir betrachten die binären Zufallsgrößen $X$, $Y$ und $Z$ mit folgenden Eigenschaften:
- $X$ und $Y$ seien statistisch unabhängig.
- Für ihre Wahrscheinlichkeitsfunktionen gelte:
- $$P_X(X) = [1/2, 1/2], \hspace{0.2cm} P_Y(Y) = [1– p, p] \ ⇒ \ H(X) = 1\ {\rm bit}, \hspace{0.2cm} H(Y) = H_{\rm bin}(p).$$
- $Z$ ist die Modulo–2–Summe von $X$ und $Y$: $Z = X ⊕ Y$.
Aus der Verbund–Wahrscheinlichkeitsfunktion $P_{XZ}$ gemäß der oberen Grafik folgt:
- Durch Summation der Spalten–Wahrscheinlichkeiten ergibt sich $P_Z(Z) = [1/2; 1/2]$ ⇒ $H(Z) = 1\ {\rm bit}$.
- $X$ und $Z$ sind ebenfalls statistisch unabhängig, da für die 2D–PMF $P_{XZ}(X, Z) = P_X(X) · P_Z(Z)$ gilt.
- Daraus folgt: $H(Z\hspace{0.05cm}\vert\hspace{0.05cm} X) = H(Z)$, $H(X \hspace{0.05cm}\vert\hspace{0.05cm} Z) = H(X)$, $I(X; Z) = 0$.
Aus der bedingten Wahrscheinlichkeitsfunktion $P_{X\vert YZ}$ gemäß der unteren Grafik lassen sich berechnen:
- $H(X\hspace{0.05cm}\vert\hspace{0.05cm} YZ) = 0$, da alle $P_{X\hspace{0.05cm}\vert\hspace{0.05cm} YZ}$–Einträge entweder $0$ oder $1$ sind ⇒ bedingte Entropie,
- $I(X; YZ)$ = $H(X)$ – $H(X\hspace{0.05cm}\vert\hspace{0.05cm} YZ)$ = $H(X)= 1 \ {\rm bit}$ ⇒ Transinformation,
- $I(X; Y\vert Z)$ = $H(X\hspace{0.05cm}\vert\hspace{0.05cm} Z)$ = $H(X)=1 \ {\rm bit} $ ⇒ bedingte Transinformation.
Im vorliegenden Beispiel ist also die bedingte Transinformation $I(X; Y\hspace{0.05cm}\vert\hspace{0.05cm} Z) = 1$ größer als die herkömmliche Transinformation$I(X; Y) = 0$.
Kettenregel der Transinformation
Bisher haben wir die Transinformation nur zwischen zwei eindimensionalen Zufallsgrößen betrachtet. Nun erweitern wir die Definition auf insgesamt $n + 1$ Zufallsgrößen, die wir aus Darstellungsgründen mit $X_1$, \hspace{0.05cm}\text{...} \hspace{0.05cm}, $X_n$ sowie $Z$ bezeichnen. Dann gilt:
$\text{Kettenregel der Transinformation:}$ Die Transinformation zwischen der $n$–dimensionalen Zufallsgröße $X_1 X_2 \hspace{0.05cm}\text{...} \hspace{0.05cm} X_n$ und der Zufallsgröße $Z$ lässt sich wie folgt darstellen und berechnen:
- $$I(X_1\hspace{0.05cm}X_2\hspace{0.05cm}\text{...} \hspace{0.1cm}X_n;Z) = I(X_1;Z) + I(X_2;Z \vert X_1) + \hspace{0.05cm}\text{...} \hspace{0.1cm}+ I(X_n;Z\vert X_1\hspace{0.05cm}X_2\hspace{0.05cm}\text{...} \hspace{0.1cm}X_{n-1}) = \sum_{i = 1}^{n} I(X_i;Z \vert X_1\hspace{0.05cm}X_2\hspace{0.05cm}\text{...} \hspace{0.1cm}X_{i-1}) \hspace{0.05cm}.$$
$\text{Beweis:}$ Wir beschränken uns hier auf den Fall $n = 2$, also auf insgesamt drei Zufallsgrößen, und ersetzen $X_1$ durch $X$ und $X_2$ durch $Y$. Dann erhalten wir:
- $$\begin{align*}I(X\hspace{0.05cm}Y;Z) & = H(XY) - H(XY\hspace{0.05cm} \vert \hspace{0.05cm}Z) = \\ & = \big [ H(X)+ H(Y\hspace{0.05cm} \vert \hspace{0.05cm} X)\big ] - \big [ H(X\hspace{0.05cm} \vert \hspace{0.05cm} Z) + H(Y\hspace{0.05cm} \vert \hspace{0.05cm} XZ)\big ] =\\ & = \big [ H(X)- H(X\hspace{0.05cm} \vert \hspace{0.05cm} Z)\big ] - \big [ H(Y\hspace{0.05cm} \vert \hspace{0.05cm} X) + H(Y\hspace{0.05cm} \vert \hspace{0.05cm}XZ)\big ]=\\ & = I(X;Z) + I(Y;Z \hspace{0.05cm} \vert \hspace{0.05cm} X) \hspace{0.05cm}.\end{align*}$$
Aus dieser Gleichung erkennt man, dass die die Größenrelation $I(X Y; Z) ≥ I(X; Z)$ immer gegeben ist. Gleichheit ergibt sich für die bedingte Transinformation $I(Y; Z \hspace{0.05cm} \vert \hspace{0.05cm} X) = 0$, also dann, wenn die Zufallsgrößen $Y$ und $Z$ für ein gegebenes $X$ statistisch unabhängig sind.
$\text{Beispiel 5:}$ Wir betrachten die Markovkette $X → Y → Z$. Für eine solche Konstellation gilt stets das Data Processing Theorem mit der folgenden Konsequenz, die sich aus der Kettenregel der Transinformation ableiten lässt:
- $$I(X;Z) \hspace{-0.05cm} \le \hspace{-0.05cm}I(X;Y ) \hspace{0.05cm},$$
- $$I(X;Z) \hspace{-0.05cm} \le \hspace{-0.05cm} I(Y;Z ) \hspace{0.05cm}.$$
Das Theorem besagt somit:
- Man kann durch Manipulation (Processing $Z$) der Daten $Y$ keine zusätzliche Information über den Eingang $X$ gewinnen.
- Die Datenverarbeitung $Y → Z$ (durch einen zweiten Prozessor) dient nur dem Zweck, die Information über $X$ besser sichtbar zu machen.
Weitere Informationen zum Data Processing Theorem finden Sie in der Aufgabe 3.15.
Aufgaben zum Kapitel
Aufgabe 3.7: Einige Entropieberechnungen
Aufgabe 3.8: Nochmals Transinformation
Aufgabe 3.8Z: Tupel aus ternären Zufallsgrößen
Aufgabe 3.9: Bedingte Transinformation