Aufgaben:Aufgabe 4.4: Zum Quantisierungsrauschen: Unterschied zwischen den Versionen
Zeile 74: | Zeile 74: | ||
− | [[Datei:P_ID1616__Mod_A_4_4.png|right|frame|Fehlersignal für | + | [[Datei:P_ID1616__Mod_A_4_4.png|right|frame|Fehlersignal für $Q_{\rm max} = q_{\rm max}$]] |
'''(2)''' Richtig sind also die <u>Lösungsvorschläge 1, 3 und 4</u>: | '''(2)''' Richtig sind also die <u>Lösungsvorschläge 1, 3 und 4</u>: | ||
*Wir gehen hier von $Q_{\rm max} = q_{\rm max} = 6 \ \rm V$ aus. | *Wir gehen hier von $Q_{\rm max} = q_{\rm max} = 6 \ \rm V$ aus. | ||
Zeile 82: | Zeile 82: | ||
− | '''(3)''' Das Fehlersignal $ε(t)$ verläuft ebenso wie $q(t)$ sägezahnförmig. Somit eignet sich zur Berechnung des quadratischen Mittelwertes dieselbe Gleichung wie in Teilaufgabe (1). Zu beachten ist allerdings die um den Faktor $M$ kleinere Amplitude, während die unterschiedliche Periodendauer für die Mittelung keine Rolle spielt: | + | '''(3)''' Das Fehlersignal $ε(t)$ verläuft ebenso wie $q(t)$ sägezahnförmig. Somit eignet sich zur Berechnung des quadratischen Mittelwertes dieselbe Gleichung wie in Teilaufgabe '''(1)'''. Zu beachten ist allerdings die um den Faktor $M$ kleinere Amplitude, während die unterschiedliche Periodendauer für die Mittelung keine Rolle spielt: |
:$$P_{\rm Q} = \frac{P_{\rm S}}{M^2} = \frac{12\,{\rm V}^2}{36}\hspace{0.15cm}\underline {= 0.333\,{\rm V}^2 }\hspace{0.05cm}.$$ | :$$P_{\rm Q} = \frac{P_{\rm S}}{M^2} = \frac{12\,{\rm V}^2}{36}\hspace{0.15cm}\underline {= 0.333\,{\rm V}^2 }\hspace{0.05cm}.$$ | ||
− | '''(4)''' Die Ergebnisse der Teilaufgaben (1) und (3) führen zum Quantisierungs–SNR: | + | |
+ | '''(4)''' Die Ergebnisse der Teilaufgaben '''(1)''' und '''(3)''' führen zum Quantisierungs–SNR: | ||
:$$\rho_{\rm Q} = \frac{P_{\rm S}}{P_{\rm Q}} = M^2 = 36 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm Q}\hspace{0.15cm}\underline { =15.56\,{\rm dB}} \hspace{0.05cm}.$$ | :$$\rho_{\rm Q} = \frac{P_{\rm S}}{P_{\rm Q}} = M^2 = 36 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm Q}\hspace{0.15cm}\underline { =15.56\,{\rm dB}} \hspace{0.05cm}.$$ | ||
+ | |||
'''(5)''' Mit $M = 2^N$ erhält man allgemein: | '''(5)''' Mit $M = 2^N$ erhält man allgemein: | ||
Zeile 93: | Zeile 95: | ||
:$$N = 8:\hspace{0.2cm} 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm Q} \hspace{0.15cm}\underline {= 48.16\,{\rm dB}}\hspace{0.05cm},$$ | :$$N = 8:\hspace{0.2cm} 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm Q} \hspace{0.15cm}\underline {= 48.16\,{\rm dB}}\hspace{0.05cm},$$ | ||
:$$N = 16:\hspace{0.2cm} 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm Q} \hspace{0.15cm}\underline { = 96.32\,{\rm dB}}\hspace{0.05cm}.$$ | :$$N = 16:\hspace{0.2cm} 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm Q} \hspace{0.15cm}\underline { = 96.32\,{\rm dB}}\hspace{0.05cm}.$$ | ||
+ | |||
'''(6)''' <u>Alle genannten Voraussetzungen</u> müssen erfüllt sein: | '''(6)''' <u>Alle genannten Voraussetzungen</u> müssen erfüllt sein: | ||
*Bei nichtlinearer Quantisierung gilt der einfache Zusammenhang $ρ_{\rm Q} = M^2$ nicht. | *Bei nichtlinearer Quantisierung gilt der einfache Zusammenhang $ρ_{\rm Q} = M^2$ nicht. | ||
*Bei einer anderen Amplitudenverteilung als der Gleichverteilung ist $ρ_{\rm Q} = M^2$ ebenfalls nur eine Näherung, die jedoch meist in Kauf genommen wird. | *Bei einer anderen Amplitudenverteilung als der Gleichverteilung ist $ρ_{\rm Q} = M^2$ ebenfalls nur eine Näherung, die jedoch meist in Kauf genommen wird. | ||
− | *Ist $Q_{\rm max} < q_{\rm max}$, so kommt es zu einem | + | *Ist $Q_{\rm max} < q_{\rm max}$, so kommt es zu einem Abschneiden der Spitzen, während mit $Q_{\rm max} > q_{\rm max}$ die Quantisierungsintervalle größer sind als erforderlich. |
+ | |||
− | [[Datei:P_ID1618__Mod_A_4_4f.png|center|frame|Quantisierung mit | + | [[Datei:P_ID1618__Mod_A_4_4f.png|center|frame|Quantisierung mit $Q_{\rm max} \ne q_{\rm max}$]] |
− | Die Grafik zeigt die Fehlersignale $ε(t)$ für $Q_{\rm max} > q_{\rm max}$ (links) und $Q_{\rm max} < q_{\rm max}$ (rechts). In beiden Fällen ergibt sich eine deutlich größere Quantisierungsrauschleistung als unter Punkt (3) berechnet. | + | Die Grafik zeigt die Fehlersignale $ε(t)$ für $Q_{\rm max} > q_{\rm max}$ (links) und $Q_{\rm max} < q_{\rm max}$ (rechts). In beiden Fällen ergibt sich eine deutlich größere Quantisierungsrauschleistung als unter Punkt '''(3)''' berechnet. |
Version vom 9. Januar 2019, 18:04 Uhr
Zur Berechnung der Quantisierungsrauschleistung $P_{\rm Q}$ gehen wir von einem periodischen sägezahnförmigen Quellensignal $q(t)$ mit dem Wertebereich $±q_{\rm max}$ und der Periodendauer $T_0$ aus.
- Im mittleren Zeitbereich $-T_0/2 ≤ t ≤ T_0/2$ gilt: $q(t) = q_{\rm max} \cdot \left ( {2 \cdot t}/{T_0} \right ).$
- Die Leistung des Signals $q(t)$ bezeichnen wir hier als die Sendeleistung $P_{\rm S}$.
Das Signal $q(t)$ wird gemäß der Grafik mit $M = 6$ Stufen quantisiert. Das quantisierte Signal ist $q_{\rm Q}(t)$, wobei gilt:
- Der lineare Quantisierer ist für den Amplitudenbereich $±Q_{\rm max}$ ausgelegt, so dass jedes Quantisierungsintervall die Breite ${\it Δ} = 2/M · Q_{\rm max}$ aufweist.
- Die Grafik zeigt diesen Sachverhalt für $Q_{\rm max} = q_{\rm max} = 6 \ \rm V$. Von diesen Zahlenwerten soll bis einschließlich Teilaufgabe (5) ausgegangen werden.
Die so genannte Quantisierungsrauschleistung ist als der quadratische Mittelwert des Differenzsignals $ε(t) = q_{\rm Q}(t) - q(t)$ definiert. Es gilt
- $$P_{\rm Q} = \frac{1}{T_0' } \cdot \int_{0}^{T_0'}\varepsilon(t)^2 \hspace{0.05cm}{\rm d}t \hspace{0.05cm},$$
wobei die Zeit $T_0'$ geeignet zu wählen ist.
Als Quantisierungs–SNR bezeichnet man das Verhältnis $\rho_{\rm Q} = {P_{\rm S}}/{P_{\rm Q}}\hspace{0.05cm},$ das meist logarithmisch (in dB) angegeben wird.
Hinweise:
- Die Aufgabe gehört zum Kapitel Pulscodemodulation.
- Bezug genommen wird insbesondere auf die Seite Quantisierung und Quantisierungsrauschen.
Fragebogen
Musterlösung
- $$P_{\rm S} = \frac{1}{T_0/2} \cdot \int_{0}^{T_0/2}q^2(t) \hspace{0.05cm}{\rm d}t = \frac{2 \cdot q_{\rm max}^2}{T_0} \cdot \int_{0}^{T_0/2}\left ( { 2 \cdot t}/{T_0} \right )^2 \hspace{0.05cm}{\rm d}t= \frac{2 \cdot q_{\rm max}^2}{T_0} \cdot \frac{T_0}{2} \cdot \int_{0}^{1}x^2 \hspace{0.05cm}{\rm d}x = \frac{q_{\rm max}^2}{3} \hspace{0.05cm}.$$
Hierbei wurde die Substitution $x = 2 · t/T_0$ verwendet. Mit $q_{\rm max} = 6 \ \rm V$ erhält man $P_\rm S = 12 \ V^2$.
(2) Richtig sind also die Lösungsvorschläge 1, 3 und 4:
- Wir gehen hier von $Q_{\rm max} = q_{\rm max} = 6 \ \rm V$ aus.
- Damit ergibt sich das sägezahnförmige Fehlersignal $ε(t)$ zwischen $±1\ \rm V$.
- Die Periodendauer ist $T_0' = T_0/6$.
(3) Das Fehlersignal $ε(t)$ verläuft ebenso wie $q(t)$ sägezahnförmig. Somit eignet sich zur Berechnung des quadratischen Mittelwertes dieselbe Gleichung wie in Teilaufgabe (1). Zu beachten ist allerdings die um den Faktor $M$ kleinere Amplitude, während die unterschiedliche Periodendauer für die Mittelung keine Rolle spielt:
- $$P_{\rm Q} = \frac{P_{\rm S}}{M^2} = \frac{12\,{\rm V}^2}{36}\hspace{0.15cm}\underline {= 0.333\,{\rm V}^2 }\hspace{0.05cm}.$$
(4) Die Ergebnisse der Teilaufgaben (1) und (3) führen zum Quantisierungs–SNR:
- $$\rho_{\rm Q} = \frac{P_{\rm S}}{P_{\rm Q}} = M^2 = 36 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm Q}\hspace{0.15cm}\underline { =15.56\,{\rm dB}} \hspace{0.05cm}.$$
(5) Mit $M = 2^N$ erhält man allgemein:
- $$ \rho_{\rm Q} = M^2 = 2^{2N} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm Q} =20 \cdot {\rm lg}\hspace{0.1cm}(2)\cdot N \hspace{0.15cm}\underline {\approx 6.02\,{\rm dB}} \cdot N .$$
Daraus ergeben sich die gesuchten Sonderfälle:
- $$N = 8:\hspace{0.2cm} 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm Q} \hspace{0.15cm}\underline {= 48.16\,{\rm dB}}\hspace{0.05cm},$$
- $$N = 16:\hspace{0.2cm} 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm Q} \hspace{0.15cm}\underline { = 96.32\,{\rm dB}}\hspace{0.05cm}.$$
(6) Alle genannten Voraussetzungen müssen erfüllt sein:
- Bei nichtlinearer Quantisierung gilt der einfache Zusammenhang $ρ_{\rm Q} = M^2$ nicht.
- Bei einer anderen Amplitudenverteilung als der Gleichverteilung ist $ρ_{\rm Q} = M^2$ ebenfalls nur eine Näherung, die jedoch meist in Kauf genommen wird.
- Ist $Q_{\rm max} < q_{\rm max}$, so kommt es zu einem Abschneiden der Spitzen, während mit $Q_{\rm max} > q_{\rm max}$ die Quantisierungsintervalle größer sind als erforderlich.
Die Grafik zeigt die Fehlersignale $ε(t)$ für $Q_{\rm max} > q_{\rm max}$ (links) und $Q_{\rm max} < q_{\rm max}$ (rechts). In beiden Fällen ergibt sich eine deutlich größere Quantisierungsrauschleistung als unter Punkt (3) berechnet.