Aufgaben:Aufgabe 2.12: Zur nichtkohärenten Demodulation: Unterschied zwischen den Versionen
Zeile 75: | Zeile 75: | ||
===Musterlösung=== | ===Musterlösung=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' Durch Anwendung der auf der Angabenseite gegebenen trigonometrischen Umformungen erhält man unter Berücksichtigung der beiden Tiefpässe (die Anteile um die doppelte Trägerfrequenz werden entfernt): | + | '''(1)''' Durch Anwendung der auf der Angabenseite gegebenen trigonometrischen Umformungen erhält man unter Berücksichtigung der beiden Tiefpässe <br>(die Anteile um die doppelte Trägerfrequenz werden entfernt): |
:$$b_1(t) = q(t) \cdot \cos(\omega_{\rm T} \cdot t + \Delta \phi_{\rm T}) \cdot 2 \cdot \cos(\omega_{\rm T} \cdot t) = q(t) \cdot \cos(\Delta \phi_{\rm T})\hspace{0.05cm},$$ | :$$b_1(t) = q(t) \cdot \cos(\omega_{\rm T} \cdot t + \Delta \phi_{\rm T}) \cdot 2 \cdot \cos(\omega_{\rm T} \cdot t) = q(t) \cdot \cos(\Delta \phi_{\rm T})\hspace{0.05cm},$$ | ||
:$$ b_2(t) = q(t) \cdot \cos(\omega_{\rm T} \cdot t + \Delta \phi_{\rm T}) \cdot (-2) \cdot \sin(\omega_{\rm T} \cdot t) = q(t) \cdot \sin(\Delta \phi_{\rm T})\hspace{0.05cm}.$$ | :$$ b_2(t) = q(t) \cdot \cos(\omega_{\rm T} \cdot t + \Delta \phi_{\rm T}) \cdot (-2) \cdot \sin(\omega_{\rm T} \cdot t) = q(t) \cdot \sin(\Delta \phi_{\rm T})\hspace{0.05cm}.$$ | ||
− | *Richtig sind somit <u>die erste und die vierte Antwort</u>. | + | *Richtig sind somit <u>die erste und die vierte Antwort</u>. |
Zeile 84: | Zeile 84: | ||
'''(2)''' Die Summe der Quadrate der beiden Teilsignale ergibt: | '''(2)''' Die Summe der Quadrate der beiden Teilsignale ergibt: | ||
:$$ b(t) = b_1^2(t) + b_2^2(t)= q^2(t) \cdot \left( \cos^2(\Delta \phi_{\rm T})+ \sin^2(\Delta \phi_{\rm T})\right) = q^2(t)\hspace{0.05cm}.$$ | :$$ b(t) = b_1^2(t) + b_2^2(t)= q^2(t) \cdot \left( \cos^2(\Delta \phi_{\rm T})+ \sin^2(\Delta \phi_{\rm T})\right) = q^2(t)\hspace{0.05cm}.$$ | ||
− | Die möglichen Amplitudenwerte sind somit: | + | *Die möglichen Amplitudenwerte sind somit: |
:$$b_{\rm min}\hspace{0.15cm}\underline{ = 0},$$ | :$$b_{\rm min}\hspace{0.15cm}\underline{ = 0},$$ | ||
:$$ b_{\rm max}\hspace{0.15cm}\underline{ =9}.$$ | :$$ b_{\rm max}\hspace{0.15cm}\underline{ =9}.$$ | ||
Zeile 90: | Zeile 90: | ||
− | '''(3)''' Richtig ist der <u>zweite Lösungsvorschlag</u>: | + | '''(3)''' Richtig ist der <u>zweite Lösungsvorschlag</u>: |
:$$v=g(b) = \sqrt{b} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} v(t) = \sqrt{ q^2(t) } = q(t)\hspace{0.05cm}.$$ | :$$v=g(b) = \sqrt{b} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} v(t) = \sqrt{ q^2(t) } = q(t)\hspace{0.05cm}.$$ | ||
Zeile 97: | Zeile 97: | ||
:$$b_{\rm min}\hspace{0.15cm}\underline{ = 9},$$ | :$$b_{\rm min}\hspace{0.15cm}\underline{ = 9},$$ | ||
:$$b_{\rm max}\hspace{0.15cm}\underline{ =9}.$$ | :$$b_{\rm max}\hspace{0.15cm}\underline{ =9}.$$ | ||
− | Dies zeigt, dass der hier betrachtete Demodulator nur dann funktioniert, wenn für alle Zeiten $q(t) ≥ 0$ oder $q(t) ≤ 0$ gilt und dies dem Empfänger auch bekannt ist. | + | |
+ | Dies zeigt, dass der hier betrachtete Demodulator nur dann funktioniert, | ||
+ | *wenn für alle Zeiten $q(t) ≥ 0$ oder $q(t) ≤ 0$ gilt | ||
+ | *und dies dem Empfänger auch bekannt ist. | ||
{{ML-Fuß}} | {{ML-Fuß}} |
Aktuelle Version vom 18. Februar 2022, 17:26 Uhr
Wir betrachten ein AM–moduliertes Signal:
- $$ s(t) = q(t) \cdot \cos(\omega_{\rm T} \cdot t) \hspace{0.05cm}.$$
Den Empfänger erreicht aufgrund der Kanallaufzeit das Signal
- $$ r(t) = q(t) \cdot \cos(\omega_{\rm T} \cdot t + \Delta \phi_{\rm T}) \hspace{0.05cm}.$$
Die skizzierte Anordnung erlaubt eine perfekte Demodulation – das heißt: $v(t) = q(t)$ – ohne Kenntnis der Phase $Δϕ_T$, allerdings nur dann, wenn das Quellensignal $q(t)$ gewisse Voraussetzungen erfüllt.
Die beiden empfängerseitigen Trägersignale lauten:
- $$ z_{\rm 1, \hspace{0.08cm}E}(t) = 2 \cdot \cos(\omega_{\rm T} \cdot t) \hspace{0.05cm},$$
- $$ z_{\rm 2, \hspace{0.08cm}E}(t) = -2 \cdot \sin(\omega_{\rm T} \cdot t) \hspace{0.05cm}.$$
$\rm TP_1$ und $\rm TP_2$ bezeichnen zwei ideale (rechteckförmige) Tiefpässe, deren Grenzfrequenz jeweils gleich der Trägerfrequenz $f_{\rm T}$ ist.
Als Quellensignale werden betrachtet:
- das unipolare Rechtecksgnal $q_1(t)$ mit den dimensionslosen Amplitudenwerten $0$ und $3$,
- das bipolare Rechtecksignal $q_2(t)$ mit den dimensionslosen Amplitudenwerten $±3$.
Diese beiden Signale ergeben hinsichtlich $s(t)$
- ein ASK–Signal,
- ein BPSK–Signal.
Die nichtlineare Funktion $v = g(b)$ soll im Rahmen dieser Aufgabe ermittelt werden.
Hinweise:
- Die Aufgabe gehört zum Kapitel Weitere AM–Variantenn.
- Bezug genommen wird insbesondere auf die Seite Inkohärente (nichtkohärente) Demodulation.
- Gegeben sind folgende trigonometrischen Umformungen:
- $$ \cos(\alpha) \cdot \cos(\beta) = 1/2 \cdot \big[ \cos(\alpha - \beta)+ \cos(\alpha + \beta) \big],$$
- $$ \sin(\alpha) \cdot \sin(\beta) = 1/2 \cdot \big[ \cos(\alpha - \beta)- \cos(\alpha + \beta) \big],$$
- $$ \sin(\alpha) \cdot \cos(\beta) = 1/2 \cdot \big[ \sin(\alpha - \beta)+ \sin(\alpha + \beta) \big] \hspace{0.05cm}.$$
Fragebogen
Musterlösung
(die Anteile um die doppelte Trägerfrequenz werden entfernt):
- $$b_1(t) = q(t) \cdot \cos(\omega_{\rm T} \cdot t + \Delta \phi_{\rm T}) \cdot 2 \cdot \cos(\omega_{\rm T} \cdot t) = q(t) \cdot \cos(\Delta \phi_{\rm T})\hspace{0.05cm},$$
- $$ b_2(t) = q(t) \cdot \cos(\omega_{\rm T} \cdot t + \Delta \phi_{\rm T}) \cdot (-2) \cdot \sin(\omega_{\rm T} \cdot t) = q(t) \cdot \sin(\Delta \phi_{\rm T})\hspace{0.05cm}.$$
- Richtig sind somit die erste und die vierte Antwort.
(2) Die Summe der Quadrate der beiden Teilsignale ergibt:
- $$ b(t) = b_1^2(t) + b_2^2(t)= q^2(t) \cdot \left( \cos^2(\Delta \phi_{\rm T})+ \sin^2(\Delta \phi_{\rm T})\right) = q^2(t)\hspace{0.05cm}.$$
- Die möglichen Amplitudenwerte sind somit:
- $$b_{\rm min}\hspace{0.15cm}\underline{ = 0},$$
- $$ b_{\rm max}\hspace{0.15cm}\underline{ =9}.$$
(3) Richtig ist der zweite Lösungsvorschlag:
- $$v=g(b) = \sqrt{b} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} v(t) = \sqrt{ q^2(t) } = q(t)\hspace{0.05cm}.$$
(4) Das Ergebnis $b(t) = q^2(t)$ – siehe Teilaufgabe (2) – führt hier zum Ergebnis:
- $$b_{\rm min}\hspace{0.15cm}\underline{ = 9},$$
- $$b_{\rm max}\hspace{0.15cm}\underline{ =9}.$$
Dies zeigt, dass der hier betrachtete Demodulator nur dann funktioniert,
- wenn für alle Zeiten $q(t) ≥ 0$ oder $q(t) ≤ 0$ gilt
- und dies dem Empfänger auch bekannt ist.