Modulationsverfahren/Quadratur–Amplitudenmodulation: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 31: Zeile 31:
 
*Die beiden Übertragungszweige (I, Q) können als zwei völlig getrennte $M$–stufige ASK–Systeme aufgefasst werden, die sich gegenseitig nicht stören, solange alle Komponenten optimal ausgelegt sind. Die Quadratur–Amplitudenmodulation ermöglicht somit (im Idealfall) eine Verdoppelung der Datenrate bei gleichbleibender Qualität.  
 
*Die beiden Übertragungszweige (I, Q) können als zwei völlig getrennte $M$–stufige ASK–Systeme aufgefasst werden, die sich gegenseitig nicht stören, solange alle Komponenten optimal ausgelegt sind. Die Quadratur–Amplitudenmodulation ermöglicht somit (im Idealfall) eine Verdoppelung der Datenrate bei gleichbleibender Qualität.  
  
 +
==Systembeschreibung durch das äquivalente TP–Signal==
 +
Da die Multiplikation von $s_{\rm I}(t)$ und $s_{\rm Q}(t)$ mit einer Cosinus– bzw. Minus–Sinus–Schwingung nur eine Verschiebung im Frequenzbereich bewirkt und eine solche Verschiebung eine lineare Operation darstellt, lässt sich die Systembeschreibung mit Hilfe der äquivalenten TP–Signale wesentlich vereinfachen.
  
 +
 +
[[Datei:P_ID1708__Mod_T_4_3_S2_Ganz_neu.png | Linearer Modulator mit I– und Q–Komponente im äquivalenten TP–Bereich]]
 +
 +
 +
Die Grafik zeigt das vereinfachte Modell im Basisband. Dieses ist äquivalent zum bisher betrachteten Blockschaltbild. Beachten Sie bitte die folgenden Hinweise:
 +
*Die im Blockschaltbild rot gezeichnete Seriell–Parallel–Wandlung und die Signalraumzuordnung bleibt erhalten, obwohl dieser Block hier nicht mehr eingezeichnet ist. Lassen wir zunächst auch den oft aus schaltungstechnischen Gründen eingebrachten Bandpass $H_{\rm BP}(f)$ außer Betracht.
 +
*Alle Doppelpfeile in dem obigen Basisbandmodell kennzeichnen komplexe Größen. Die damit verbundenen Operationen sind ebenfalls komplex zu verstehen. Beispielsweise fasst der komplexe Amplitudenkoeffizient $a_ν$ je einen Inphase– und einen Quadraturkoeffizienten zusammen:
 +
$$a_\nu = a_{\rm I\hspace{0.03cm}\it \nu} + {\rm j} \cdot a_{\rm
 +
Q\hspace{0.03cm}\it \nu} \hspace{0.05cm}.$$
 +
*Die äquivalente Tiefpass–Repräsentation des tatsächlichen, physikalischen und damit per se reellen Sendesignals $s(t)$ ist bei QAM stets komplex und es gilt mit den Teilsignalen $s_{\rm I}(t)$ und $s_{\rm Q}(t)$:
 +
$$s_{\rm TP}(t) = s_{\rm I}(t) + {\rm j} \cdot s_{\rm Q}(t) = \sum_{\nu = - \infty}^{+\infty} a_\nu \cdot g_s (t - \nu \cdot T)\hspace{0.05cm}.$$
 +
*Zum analytischen Signal  $s_+(t)$ kommt man von $s_{\rm TP}(t)$ durch Multiplikation mit der komplexen Exponentialfunktion. Das physikalische Sendesignal $s(t)$ ergibt sich dann als der Realteil von $s_+(t)$.
 +
*Damit die Vorzeichen im Blockschaltbild der letzten Seite und im skizzierten Basisbandmodell übereinstimmen, ist im Quadraturzweig die Multiplikation mit der negativen Sinus–Schwingung erforderlich, wie die nachfolgende Rechnung zeigt:
 +
$$\begin{align*}s(t)  & = {\rm Re}[s_{\rm +}(t)] = {\rm Re}[s_{\rm TP}(t) \cdot{\rm e}^{{\rm j}2\pi f_{\rm T} t}] = \\ & = {\rm Re} \left[\left ( \sum (a_{\rm I\hspace{0.03cm}\it \nu} + {\rm j} \cdot a_{\rm Q\hspace{0.03cm}\it \nu} ) \cdot g_s (t - \nu \cdot T)\right )\left ( \cos(2 \pi f_{\rm T} t) + {\rm j} \cdot \sin(2 \pi f_{\rm T} t) \right )\right]= \\ & = s_{\rm I}(t) \cdot \cos(2\pi f_{\rm T} t) -  s_{\rm Q}(t) \cdot \sin(2 \pi f_{\rm T} t) \hspace{0.05cm}.\end{align*}$$
 +
*Der Einfluss des Bandpasses $H_{\rm BP}(f)$, der in der Praxis oft am Ausgang des QAM–Modulators zu berücksichtigen ist, kann dem Impulsformfilter $g_s(t)$ beaufschlagt werden. Ist der Durchlassbereich des BP–Filters symmetrisch um $f_{\rm T}$, so ist sein Tiefpass–Äquivalent (im Zeitbereich) $h_{\rm BP→TP}(t)$ rein reell und man kann im Modell $g_s(t)$ durch $g_s(t) \star h_{\rm BP→TP}(t)$ ersetzen.
  
  

Version vom 24. Juni 2016, 09:47 Uhr

Allgemeine Beschreibung und Signalraumzuordnung (1)

Aufgrund der Orthogonalität von Cosinus und (Minus–)Sinus kann man über einen Übertragungskanal zwei Datenströme unabhängig voneinander übertragen. Die Grafik zeigt das allgemeine Blockschaltbild.


Blockschaltbild eines linearen Modulators mit I– und Q–Komponente; Signalraumzuordnung 16-QAM


Dieses sehr allgemeine Modell lässt sich wie folgt beschreiben:

  • Am Eingang liegt die binäre Quellensymbolfolge $〈q_k〉$ mit der Bitrate $R_{\rm B}$ an. Der zeitliche Abstand zweier Symbole ist damit $T_{\rm B} = 1/R_{\rm B}$.
  • Aus jeweils $b$ binären Eingangssymbolen $q_k$ werden zwei mehrstufige Amplitudenkoeffizienten $a_{\rm Iν}$ und $a_{\rm Qν}$ abgeleitet, wobei „I” für Inphase und „Q” für Quadraturkomponente steht.
  • Ist $b$ geradzahlig und die Signalraumzuordnung quadratisch, so können die Koeffizienten $a_{\rm Iν}$ und $a_{\rm Qν}$ jeweils einen von $M = 2^{b/2}$ Amplitudenwerten mit gleicher Wahrscheinlichkeit annehmen. Man spricht dann von Quadratur–Amplitudenmodulation (QAM).
  • Das in der Grafik betrachtete Beispiel gilt für die 16–QAM mit $b = M =$ 4 und dementsprechend 16 Signalraumpunkten. Bei einer 256–QAM würde $b =$ 8 und $M =$ 16 gelten $(2^b = M^2 =$ 256).

Allgemeine Beschreibung und Signalraumzuordnung (2)

Blockschaltbild eines linearen Modulators mit I– und Q–Komponente; Signalraumzuordnung 16-QAM


Fortsetzung der Bildbeschreibung zur obigen Grafik:

  • Anschließend werden die Koeffizienten $a_{\rm Iν}$ und $a_{\rm Qν}$ jeweils einem Diracpuls als Impulsgewichte eingeprägt. Nach der Impulsformung mit dem Sendegrundimpuls $g_s(t)$ gilt somit in den beiden Zweigen des Blockschaltbildes:

$$\begin{align*}s_{\rm I}(t) & = \sum_{\nu = - \infty}^{+\infty}a_{\rm I\hspace{0.03cm}\it \nu} \cdot g_s (t - \nu \cdot T)\hspace{0.05cm},\\s_{\rm Q}(t) & = \sum_{\nu = - \infty}^{+\infty}a_{\rm Q\hspace{0.03cm}\it \nu} \cdot g_s (t - \nu \cdot T)\hspace{0.05cm}.\end{align*}$$

  • Anzumerken ist, dass wegen der redundanzfreien Umsetzung die Symboldauer $T$ dieser Signale um den Faktor $b$ größer ist als die Bitdauer $T_{\rm B}$ des binären Quellensignals. Im gezeichneten Beispiel (16-QAM) gilt $T = 4 · T_{\rm B}$.
  • Das QAM–Sendesignal $s(t)$ ist dann die Summe der beiden mit Cosinus bzw. Minus–Sinus multiplizierten Teilsignale:

$$\begin{align*}s_{\rm cos}(t) & = s_{\rm I}(t) \cdot \cos(2 \pi f_{\rm T} t),\\ s_{\rm -sin}(t) & = -s_{\rm Q}(t) \cdot \sin(2 \pi f_{\rm T} t)\end{align*}$$

  • Die beiden Übertragungszweige (I, Q) können als zwei völlig getrennte $M$–stufige ASK–Systeme aufgefasst werden, die sich gegenseitig nicht stören, solange alle Komponenten optimal ausgelegt sind. Die Quadratur–Amplitudenmodulation ermöglicht somit (im Idealfall) eine Verdoppelung der Datenrate bei gleichbleibender Qualität.

Systembeschreibung durch das äquivalente TP–Signal

Da die Multiplikation von $s_{\rm I}(t)$ und $s_{\rm Q}(t)$ mit einer Cosinus– bzw. Minus–Sinus–Schwingung nur eine Verschiebung im Frequenzbereich bewirkt und eine solche Verschiebung eine lineare Operation darstellt, lässt sich die Systembeschreibung mit Hilfe der äquivalenten TP–Signale wesentlich vereinfachen.


Linearer Modulator mit I– und Q–Komponente im äquivalenten TP–Bereich


Die Grafik zeigt das vereinfachte Modell im Basisband. Dieses ist äquivalent zum bisher betrachteten Blockschaltbild. Beachten Sie bitte die folgenden Hinweise:

  • Die im Blockschaltbild rot gezeichnete Seriell–Parallel–Wandlung und die Signalraumzuordnung bleibt erhalten, obwohl dieser Block hier nicht mehr eingezeichnet ist. Lassen wir zunächst auch den oft aus schaltungstechnischen Gründen eingebrachten Bandpass $H_{\rm BP}(f)$ außer Betracht.
  • Alle Doppelpfeile in dem obigen Basisbandmodell kennzeichnen komplexe Größen. Die damit verbundenen Operationen sind ebenfalls komplex zu verstehen. Beispielsweise fasst der komplexe Amplitudenkoeffizient $a_ν$ je einen Inphase– und einen Quadraturkoeffizienten zusammen:

$$a_\nu = a_{\rm I\hspace{0.03cm}\it \nu} + {\rm j} \cdot a_{\rm Q\hspace{0.03cm}\it \nu} \hspace{0.05cm}.$$

  • Die äquivalente Tiefpass–Repräsentation des tatsächlichen, physikalischen und damit per se reellen Sendesignals $s(t)$ ist bei QAM stets komplex und es gilt mit den Teilsignalen $s_{\rm I}(t)$ und $s_{\rm Q}(t)$:

$$s_{\rm TP}(t) = s_{\rm I}(t) + {\rm j} \cdot s_{\rm Q}(t) = \sum_{\nu = - \infty}^{+\infty} a_\nu \cdot g_s (t - \nu \cdot T)\hspace{0.05cm}.$$

  • Zum analytischen Signal $s_+(t)$ kommt man von $s_{\rm TP}(t)$ durch Multiplikation mit der komplexen Exponentialfunktion. Das physikalische Sendesignal $s(t)$ ergibt sich dann als der Realteil von $s_+(t)$.
  • Damit die Vorzeichen im Blockschaltbild der letzten Seite und im skizzierten Basisbandmodell übereinstimmen, ist im Quadraturzweig die Multiplikation mit der negativen Sinus–Schwingung erforderlich, wie die nachfolgende Rechnung zeigt:

$$\begin{align*}s(t) & = {\rm Re}[s_{\rm +}(t)] = {\rm Re}[s_{\rm TP}(t) \cdot{\rm e}^{{\rm j}2\pi f_{\rm T} t}] = \\ & = {\rm Re} \left[\left ( \sum (a_{\rm I\hspace{0.03cm}\it \nu} + {\rm j} \cdot a_{\rm Q\hspace{0.03cm}\it \nu} ) \cdot g_s (t - \nu \cdot T)\right )\left ( \cos(2 \pi f_{\rm T} t) + {\rm j} \cdot \sin(2 \pi f_{\rm T} t) \right )\right]= \\ & = s_{\rm I}(t) \cdot \cos(2\pi f_{\rm T} t) - s_{\rm Q}(t) \cdot \sin(2 \pi f_{\rm T} t) \hspace{0.05cm}.\end{align*}$$

  • Der Einfluss des Bandpasses $H_{\rm BP}(f)$, der in der Praxis oft am Ausgang des QAM–Modulators zu berücksichtigen ist, kann dem Impulsformfilter $g_s(t)$ beaufschlagt werden. Ist der Durchlassbereich des BP–Filters symmetrisch um $f_{\rm T}$, so ist sein Tiefpass–Äquivalent (im Zeitbereich) $h_{\rm BP→TP}(t)$ rein reell und man kann im Modell $g_s(t)$ durch $g_s(t) \star h_{\rm BP→TP}(t)$ ersetzen.