Aufgaben:Aufgabe 3.4: Entropie für verschiedene Wahrscheinlichkeiten: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 28: Zeile 28:
  
 
<quiz display=simple>
 
<quiz display=simple>
 +
{Zu welcher Entropie führt $P_X(X) = [ 0.1, 0.2, 0.3, 0.4]$ ?
 +
|type="{}"}
 +
$H_a(X)$ = { 1.846 1% }
 +
 +
{Es gelte allgemein $P_X(X) = [ 0.1, 0.2, p_3, p_4]$.
 +
|type="{}"}
  
  
  
Zu welcher Entropie führt $P_X(X) = [ 0.1, 0.2, 0.3, 0.4]$ ?
 
|type="{}"}
 
$H_a(X)$ = { 1.846 1% }
 
  
  

Version vom 24. November 2016, 17:52 Uhr

P ID2758 Inf Z 3 3.png

In der ersten Zeile der nebenstehenden Tabelle ist die mit „a” bezeichnete Wahrscheinlichkeitsfunktion angegeben. Für dieses $P_X(X)$ soll soll in der Teilaufgabe (a) die Entropie

$$H_{\rm a}(X) = {\rm E} \left [ {\rm log}_2 \hspace{0.1cm} \frac{1}{P_{X}(X)}\right ]$$

berechnet werden. Da hier der Logarithmus zur Basis 2 verwendet wird, ist die Pseudo–Einheit „bit” anzufügen.

In den weiteren Aufgaben sollen jeweils einige Wahrscheinlichkeiten variiert werden und zwar derart, dass sich jeweils die größtmögliche Entropie ergibt:

  • Durch geeignete Variation von $p_3$ und $p_4$ kommt man zur maximalen Entropie $H_b(X)$ unter der Voraussetzung $p_1 = 0.1$ und $p_2 = 0.2$ $\Rightarrow$ Teilaufgabe (b).
  • Durch geeignete Variation von $p_2$ und $p_3$ kommt man zur maximalen Entropie $H_c(X)$ unter der Voraussetzung $p_1 = 0.1$ und $p_4 = 0.4$ $\Rightarrow$ Teilaufgabe (c).
  • In der Teilaufgabe (d) sind alle vier Parameter zur Variation freigegeben, die entsprechend der maximalen Entropie $\Rightarrow$ $H_{max}(X)$ zu bestimmen sind.

Hinweis: Die Aufgabe bezieht sich auf das Kapitel 3.1




Fragebogen

1

Zu welcher Entropie führt $P_X(X) = [ 0.1, 0.2, 0.3, 0.4]$ ?

$H_a(X)$ =

Es gelte allgemein $P_X(X) = [ 0.1, 0.2, p_3, p_4]$.


Musterlösung

1. 2. 3. 4. 5. 6. 7.